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Figure 1. CLIP performs classification on target classes by com-
paring visual embeddings with the text embeddings generated
from class names.

Appendix I: Background on CLIP
CLIP performs contrastive learning over 400 millions

web-retrieved pairs of images and captions by pulling the
visual and text representation near if they are from the same
pair and away if they are not. At inference stage, CLIP
makes classification prediction by matching the visual em-
beddings of query images with the text embeddings of cate-
gories names (wrapped in template text such as “a photo
of {}”, or a list of templates and uses the averaged em-
bedding, as discussed in the main paper), and selects the
category with the highest cosine similarity as prediction, as
shown in Figure 1. CLIP is capable of performing classi-
fication over novel tasks without any training example, as
long as the category names are provided. CLIP has demon-
strated outstanding zero-shot classification accuracy, e.g.
76.3% top-1 accuracy on ImageNet without seeing any ex-
amples from the dataset. [25].

Appendix II: Algorithms
As described in Section 3.3 of the main paper, ReCLIP

is composed of two parallel components that are designed
for visual and text encoder fine-tuning, namely ReCLIP-V
and ReCLIP-T. On top of ReCLIP-T and ReCLIP-V, we in-
tegrate the pseudo labels by filtering the commonly-agreed
ones to produce high-confidence training signals for both
sides. In this Section, we present the detailed description of
ReCLIP-T and ReCLIP-V in Algorithm 1, and the pseudo
label sharing in Algorithm 2.

Appendix III: Evaluation Benchmarks
For the main result from the paper, we have evaluated

our model as well as the baseline methods on the vali-

dation or test splits from 22 image classification bench-
marks, according to the setup as stated from Radford, et
al [25]. The 22 benchmarks is composed of the one ab-
lation datasets AID [32] that we used for hyper-parameter
selection, and the 21 benchmarks (Caltech101 [21], CI-
FAR10 [20], CIFAR100 [20], ImageNet [9], SUN397 [33],
Birdsnap [1], Country211 [25], DTD [7], EuroSAT [15],
FER2013 [35], FGVC [22], Flowers [23], Food101 [2],
GTSRB [27], MNIST [10], Oxford Pet [24], PCam [30],
SST2 [25], RESISC45 [6], Cars [19], STL10 [8]) from the
27 benchmarks CLIP reported in Radford, et al [25], ex-
cept: i) KITTI [13], UCF101 [26], VOC2007 [12], Kinet-
ics700 [3] that are object detection or video classification
benchmarks that are out of the scope of our discussion;
ii) HatefulMemes [18] and CLEVR [17], where CLIP uses
custom splits that are not released at the time of this sub-
mission. The detailed statistics on the number of images
and the number of classes are reported in Table 1.

For comparison with POUF published score, we reported
our scores on the Office-Home datasets. Office-Home con-
tains 65 categories and 15588 images from four different
domains: 2427 Art images, 4365 Clipart images, 4439
Product images and 4357 Real-World Images.

Appendix IV: Implementation Details
As mentioned in the main paper, we use AID to choose

the best hyper-parameters for each baselines and evaluate
them with the same hyper-parameters across the 22 datasets
for SFDA evaluation.

For ReCLIP, we use learning rate of 10−3, weight de-
cay of 10−4, momentum of 0.9, batch size of 64, maximum
length of min{5000 iterations, 50 epochs} and SGD opti-
mization on both visual and text encoders. For Birdsnap,
Country211, SUN397 and ImageNet which have more than
200 classes, we use a batch size of 32 due to large mem-
ory occupation from text inputs to fit the training on a sin-
gle V100 GPU. For Label Propagation, we use propagation
strength α = 0.99 and neighbor size k = 20. For datasets
with more than 500 classes (Birdsnap, ImageNet), we no-
tice the accuracy of pseudo labels generated by label prop-
agation becomes unstable, and it requires additional hyper-
parameter tuning to achieve good performance. To maintain
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Algorithm 1 Visual and Text Encoder Self-Training: ReCLIP-V and ReCLIP-T
Require: Vision Language Pre-trained Model M = {Mv,Mt}
Require: Unlabeled Images X = {x1, ..., xn}
Require: Class Names C = {c1, ..., cm}
Require: Mode = ReCLIP-V or ReCLIP-T ▷ ReCLIP-V updates Mv with Mt frozen

▷ ReCLIP-T updates Mt with Mv frozen
for epoch← 1 to Max Epoch do
{t1, ..., tm} ←Mt({c1, ..., cm})
{v1, ..., vn} ←Mv({x1, ..., xn}) ▷ Calculate Visual and Text Embeddings
U, S, V ← svd([t1, ..., tm]), where U = [e1, ..., em]
P2 ← [e2, ..., em][e2, ..., em]⊤ ▷ Prepare Projection Matrix with Singular Value Decomposition
t̂i ← tiP2

∥tiP2∥

v̂j ← vjP2

∥vjP2∥ ▷ Align Visual and Text Embeddings in Projection Space

L← {t̂1, ..., ˆtm, v̂1, ..., v̂n}
Ỹ ← Label Propagation(L) ▷ Generate Pseudo Label through Label Propagation
if Mode=ReCLIP-T then

Ŷ ← [v̂1, ..., v̂n]
⊤[t̂1, ..., ˆtm] ▷ Generate Predictions through Cosine-Similarity

LossT ← Cross-Entropy(Ŷ , Ỹ )
Back-Propagation over Mt

else if Mode=ReCLIP-V then
wi ←

(∑
Ỹj=i vj

)
/
(∑

Ỹj=i 1
)

, for i ∈ {1, 2, ...,m}
ŵi ← wi

∥wi∥ for i ∈ {1, 2, ...,m} ▷ Calculate the average embeddings for each class i

Ŷ ← [v̂1, ..., v̂n]
⊤[ŵ1, ..., ŵm] ▷ Generate Predictions through Cosine-Similarity

LossV ← Cross-Entropy(Ŷ , Ỹ )
Back-Propagation over Mv

end if
end for

Algorithm 2 ReCLIP with Pseudo Label Sharing
Require: Component 1 M1 = {M1

v ,M
1
t } (for ReCLIP-V),

Require: Component 2 M2 = {M2
v ,M

2
t } (for ReCLIP-T)

Require: Unlabeled Images X = {x1, ..., xn}
Require: Class Names C = {c1, ..., cm}

Self-Training Adaptation Stage:
for epoch← 1 to Max Epoch do

Ŷ 1, Ỹ 1 ← ReCLIP-V(M1, X,C)
Ŷ 2, Ỹ 2 ← ReCLIP-T(M2, X,C) ▷ ReCLIP-V/T generate predictions Ŷ 1, Ŷ 2 and pseudo labels Ỹ 1, Ỹ 2.
Commonly Agreed Index Map Q← (Ỹ1 = Ỹ2) ▷ Boolean Index with True indicates Ỹ 1 agrees with Ỹ 2.
LossV ← Cross-Entropy(Ŷ 1[Q], Ỹ 1[Q])
LossT ← Cross-Entropy(Ŷ 2[Q], Ỹ 2[Q]) ▷ Only calculate loss on entries where Q is True (Ỹ 1 agrees with Ỹ 2).
Back-Propagate M1

v with LossV

Back-Propagate M2
t with LossT

end for

Inference Stage:
Ŷ 1 ← ReCLIP-V(M1, X,C) ▷ Generate inference predictions from ReCLIP-T/V
Ŷ 2 ← ReCLIP-T(M2, X,C) ▷ At inference time, ReCLIP-T/V skip the pseudo label generation.
Ŷ ← 1

2 (Ŷ
1 + Ŷ 2) ▷ Aggregate prediction logits from both ReCLIP-T/V for prediction.

return argmax
i

ŷji as prediction for image xj ▷ Y = {ŷji}, where ŷji is probability of image xj on class i.



A
ve

ra
ge

A
ID

[3
2]

B
ir

ds
na

p
[1

]

C
al

te
ch

10
1

[2
1]

C
IF

A
R

10
[2

0]

C
IF

A
R

10
0

[2
0]

C
ou

nt
ry

21
1

[2
5]

D
T

D
[7

]

E
ur

oS
A

T
[1

5]

FE
R

20
13

[3
5]

FG
V

C
[2

2]

Fl
ow

er
s

[2
3]

Fo
od

10
1

[2
]

G
T

SR
B

[2
7]

Im
ag

eN
et

[9
]

M
N

IS
T

[1
0]

O
xf

or
d

Pe
t[

24
]

PC
am

[3
0]

SS
T

2
[2

5]

R
E

SI
SC

45
[6

]

St
an

fo
rd

C
ar

s
[1

9]

ST
L

10
[8

]

SU
N

39
7

[3
3]

Image Number 1500 2,149 9,146 10,000 10,000 21,100 1,880 5000 3,574 3,333 6,149 25,250 12,630 50,000 10,000 3,669 32,768 1,821 25,200 8,041 8,000 19,850
Class Number 30 500 102 10 100 211 47 10 8 100 102 102 43 1,000 10 37 2 2 45 196 10 397

AaD (h) 1.19 0.49 0.56 0.98 1.26 1.26 1.30 0.42 4.39 0.71 0.71 1.24 1.24 1.29 1.29 1.27 0.77 1.31 0.38 1.34 1.26 1.30 1.32
POUF (h) 6.18 4.51 7.07 5.61 5.80 5.71 7.30 5.50 5.60 3.73 5.02 5.82 6.38 6.41 13.58 5.74 4.13 6.79 4.91 6.33 5.97 5.92 8.19

ReCLIP (h) 2.35 0.68 0.97 2.94 1.62 2.68 1.58 1.08 1.82 0.90 1.24 2.73 5.66 3.82 3.23 2.19 0.95 2.99 0.61 3.12 4.17 2.18 4.63

Table 1. Metadata and Runtime comparison of AaD, POUF and ReCLIP of the 22 Evaluation Benchmarks. Time reported in the unit of
hour (h).

stable performance, we turn off label propagation and sim-
ply use model predictions as pseudo labels on datasets with
over 500 categories (Birdsnap, ImageNet). For all other
datasets, we follow the exact process as described in Al-
gorithm 1 and 2.

For both AaD and POUF, we have tested different
hyper-parameters and report the the best performing set-
ting, with learning rate of 10−3, weight decay of 10−3,
momentum of 0.9, SGD optimization on AaD, and learn-
ing rate of 10−2, weight decay of 10−3, momentum of
0.9, SGD optimization on POUF. For both AaD and
POUF, we extended their default training length to match
our training length of ReCLIP, with batch size of 64 ×
min{5000 iterations, 50 epochs} steps on AaD, and batch
size of 32 × min{10000 iterations, 100 epochs} steps on
POUF.

For ReCLIP on Office-Home, we use the Real-World
(Rw) domain to choose the hyper-parameter. We use SGD
optimizer with learning rate of 10−2 on the visual encoder
and 10−3 on the text encoder, batch size of 64 and 5000
iteration as maximum step across all domains. For label
propagation, we use k = 10 due to the smaller dataset size.

Appendix V: Additional Ablation Results

Choice on Learnable Modules

In Table 2, we evaluate different learnable modules by
comparing their fully-supervised fine-tuned performance.
As suggested in [31], fine-tuning the normalization weights
is shown to be efficient and stable, compared to fine-tuning
the entire weights in self-training of ReCLIP.

Recent research [16] as well as POUF [28] also suggests
that learnable prompts can also be effective in providing
stable and fast performance improvement during the fine-
tuning of Transformer [11, 29] based models. In Table 2,
we perform Visual Prompt tuning following [16], and our
own designed Text Prompt. Please refer to Appendix VII
for more details.

As shown in Table 2, fine-tuning Layer-Norm weights
from Visual Encoder has the best fully supervised accuracy

CIFAR10 CIFAR100 AID SUN397
Vanilla CLIP 95.54 76.48 64.87 67.25

Learnable Text Prompts 97.50 82.18 93.73 75.27
Learnable Visual Prompts [16] 96.70 80.68 74.27 68.09

Text Encoder Layer-Norm 97.32 83.30 94.8 78.47
Visual Encoder Layer-Norm 97.8 85.16 69.40 68.30

Table 2. Fully supervised fine-tuning accuracy of CLIP with dif-
ferent learnable modules on ablation datasets. On AID, fine-tuning
weights from Text Encoder Layer-Norm is shown to be most ef-
fective; On CIFAR10 and CIFAR100, fine-tuning weights from
Visual Encoder Layer-Norm is shown to be most effective.

CIFAR10 CIFAR100 AID SUN397
CLIP 95.60 78.22 68.73 67.97

ReCLIP (Transductive) 97.04 83.42 79.27 71.25
ReCLIP (Inductive) 96.92 82.30 79.87 74.53

Table 3. Inductive and Transductive performance comparison of
ReCLIP on ablation datasets.

on both CIFAR10 and CIFAR100, while fine-tuning Layer-
Norm weights from Text Encoder has the best fully super-
vised accuracy on AID. As described in Section 2 from the
Main Paper, on some datasets (including AID), the perfor-
mance of CLIP is mainly limited by the poor quality text
embeddings from inaccurate class names. In this case, fine-
tuning the text encoder will achieve better performance as
we observed. Table 2 results suggest the necessity of fine-
tuning CLIP from both the visual and text side to handle
different scenarios.

Inductive Results

We perform the SFDA evaluation in Table 1 from the
main paper, to follow the protocols of AaD [34] and
POUF [28] and to fully utilize the test examples. How-
ever, ReCLIP can also be applied in the inductive manner,
so that the adaptation only has to be performed once for the
target domain, and the adapted model will be effective on
new and unseen examples of the target domain. In Table 3
we run ReCLIP in an inductive setting, where ReCLIP per-
forms self-training on the training split of a dataset (0.5 to 5
GPU-Hour), and inference on the test split (similar to CLIP



inference time). ReCLIP achieves similar improvements in
the inductive setting as in the transductive setting.

Pseudo Label Quality

In Table 4 we report the pseudo label accuracy of Re-
CLIP. We report the pseudo label accuracy from ReCLIP
on the first epoch, before the self-training algorithm up-
dates the model weights. From Table 4 we observe that
the label propagation over projected visual and text embed-
dings has obtained ReCLIP pseudo labels with consistent
improved accuracy over CLIP, only except Birdsnap and
ImageNet which have more than 500 categories, as we dis-
cussed in Appendix IV. The results from Table 4 demon-
strate the effectiveness of our version of the label propaga-
tion method in generating reliable pseudo labels for vision-
language models. More discussion on pseudo label genera-
tion is also covered in Section 4.3.2 of the main paper.

Appendix VI: Time Analysis
We present the runtime required by SFDA methods,

namely AaD, POUF and ReCLIP, in Table 1. We matched
all methods to be at the same training steps for fair com-
parison. As shown by the result, AaD takes an average of
1.19 hours to adapt, ReCLIP takes 2.35 hours and POUF
takes 6.18 hours. ReCLIP is not much slower than AaD al-
though ReCLIP trains two sets of encoders at the same time,
except on datasets with more categories due to the time re-
quired for the Label Propagation process. However, POUF
is much slower than both AaD and ReCLIP, due to its less
efficient implementation. However, all three algorithms are
very efficient as the adaptation only has to be applied once
for each new target domain.

Appendix VII: Details on the design of learn-
able Language Prompt
What is Language Prompts

During the large-scale contrastive pre-training,
CLIP [25] was trained to match visual-text embed-
ding between training images with their caption sentences
such as ‘‘A Golden Retriever dog sitting
on grass’’. However, during inference time, category
descriptions are usually provided in the form of phrases
such as ‘‘Golden Retriever’’ or just ‘‘Dog’’
instead of captions in complete sentences. To mitigate
this gap, CLIP has proposed to use templates to wrap the
category description phrase into complete sentences to
generate better text embeddings.

For optimal performance, CLIP [25] further claims that
specific templates which provide contexts to the cate-
gory names might help generate better text embeddings
for classification. For example, CLIP finds the tem-
plate prompt ‘‘A photo of {category name}, a

A Photo of Dog

Dog

t1

[EOS]

t2 t3 t4t* t5

Text Encoder

t

Category Name

Template
Prompt

Tokenized
Embeddings

Result Text Embeddings

[BOS]

t0

Figure 2. Demonstration of the design of Learnable Prompt. t∗

represents a learnable token embedding that is inserted at the be-
ginning of the sequence of inputs to the transformer-based text en-
coder. “BOS” and “EOS” stands for “beginning of sentence” and
“end of sentence” and they serve as the special tokens for the text
encoder to identify the beginning and end of the input sentence.

type of pet’’ works the best for OxfordIII-Pet [24].
CLIP has designed different lists of template prompts for
all datasets it was evaluated on. The details can be found
on their official GitHub repository https://github.
com/openai/CLIP/blob/main/data/prompts.
md.

Learnable Language Prompts

As demonstrated by CLIP [25], the wisely chosen tem-
plate prompts might play a vital role in generating accu-
rate text embeddings. However, this process largely de-
pends on the heuristic design. Our goal for the learnable
language prompt design is to make the prompt learnable
and to avoid having different template prompts for differ-
ent datasets. Additionally, this can also be an efficient and
stable way to fine-tune the performance of CLIP.

We start from the default template prompt ‘‘A photo
of {category name}’’, and insert an additional
learnable token embedding t∗ at the beginning of the sen-
tence, right after the Begin-Of-Sentence (BOS) token, as
shown in Figure 2. t∗ is initialized with the same embedding
value of word ‘‘is’’ for reasonable performance before
it is fine-tuned. During the fine-tuning process, token t∗ is
made to be learnable while token embeddings for all other
words are fixed.

Appendix VIII: Limitation and Future Work

As mentioned in the Implementation Details section, we
have observed that on datasets with more than 500 classes
(Birdsnap, ImageNet), the accuracy of pseudo labels gener-
ated by label propagation becomes unstable, and it requires
additional hyperparameter tuning to achieve good perfor-
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CLIP repro 69.83 68.73 52.48 91.63 95.60 78.22 31.84 55.37 60.00 56.39 31.59 79.04 93.08 50.59 75.52 76.23 93.62 62.43 68.92 69.66 77.88 99.36 67.97

ReCLIP (pseudo label) 72.54 74.50 43.25 91.91 96.56 81.40 26.30 59.04 73.36 57.15 36.33 82.55 93.95 60.64 25.11 82.85 94.77 62.46 68.86 77.63 77.66 99.52 70.54

Table 4. ReCLIP pseudo label Quality. Results are generated with vanilla CLIP ViT-L/16 checkpoint, on the first epoch of ReCLIP before
the training algorithms update the model weights.

mance. To maintain stable performance, we have turned off
label propagation and simply used model predictions as our
pseudo labels on datasets with over 500 categories. Studies
on how the hyper-parameters influence the label propaga-
tion performance on datasets with more than 500 categories
will be important future work to further improve ReCLIP.

Another future direction will be the utilization of aug-
mentation consistency. Augmentation Consistency has been
shown to be a very powerful unsupervised training sig-
nal and has been widely applied in unsupervised methods
[4, 5, 14]. Due to the scope and complexity of this project,
we have not explored the usage of augmentation consis-
tency in source-free domain adaptation. It will be important
future work to explore the combination of the current Re-
CLIP with augmentation consistency to further improve the
adaptation performance.
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