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A. Implementation Details
We implement our model on top of the official Style-

GAN2 [9] and the PyTorch release of Deep3DFaceRecon [2].
FR and RDR are both part of Deep3DFaceRecon [2] and G
and D are part of StyleGAN2 [9]. We use the dataset tool
provided in Deep3DFaceRecon [2] to realign FFHQ [8] so
that image x aligns with 3DMM representation rep.

StyleGAN2 backbone. We follow the latest findings in
StyleGAN3 [7] and omit several insignificant details to
simplify StyleGAN2 [9]. We remove mixing regularization
and path length regularization. The depth of the mapping
network is decreased to 2, as recommended by Karras et
al. It is also noticed that decreasing the dimensionality of
z while maintaining the dimensions of w is beneficial [14].
Therefore, we reduce the dimensions of z to 64. All details
are otherwise unchanged, including the network architecture,
equalized learning rate, minibatch standard deviation, weight
(de)modulation, lazy regularization, bilinear resampling, and
exponential moving average of the generator weights. Due
to the addition of an encoder, our model is slightly larger than
StyleGAN2 config F [9]. Along with the encoder, our gen-
erator contains 38.6M parameters whereas the StyleGAN2
generator contains 30.0M parameters. Our discriminator,
containing 28.9M parameters, is the same as in StyleGAN2.

Face reconstruction and differentiable renderer. We
use the pretrained checkpoint provided by Deng et al. [2]
for FR. This updated checkpoint was trained on an
augmented dataset that includes FFHQ [8] and shows slight
performance improvement over the TensorFlow release of
Deep3DFaceRecon. We use the differentiable renderer RDR
that comes with the checkpoint for FR from the same code
repository. This renderer uses the Basel Face Model from
2009 [5] as the 3DMM parametric model for face modeling,
and nvdiffrast [10] for rasterization. We modify RDR so it
outputs a and n along with r. The renderer is otherwise un-
changed. We base our model upon the Basel Face Model [5]
rather than later work such as FLAME [11], as FLAME does
not contain skin color information, only geometry.

Training procedure. Following the StyleGAN fam-
ily [7–9], we adopt the non-saturating loss [3] and R1
gradient penalty [13] as the loss function for GAN training.
We additional append our Lconsistency, resulting in the
following objectives:

LD=−Ep,z[log(1−D(G(rep(p),z)))]−

Ex[log(D(x))]+
γ
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LG=−Ep,z[log(D(G(rep(p),z)))]+λLconsistency (2)

We closely follow the training configurations of the baseline
model in Karras et al. [6] and set γ=1. The batch size is set
to 64 and the group size of minibatch standard deviation is set
to 8. We empirically set λ=20 and the length of progressive
blending to k=2×106. The learning rate of both G and D is
set to 2.5×10−3. We train our model until D sees 25M real
images [7–9]; training took 10 days on 4 × A6000 GPUs.

Instead of approximating the distribution P (p) using
a VAE [1], we simply use its empirical distribution when
sampling p ∼ P (p) and find this to be sufficient given our
3DMM representation.

B. Encoder Architecture
Figure 1 depicts the internal structure of a general stage

(every stage other than the highest resolution stage and the
4× 4 stage) of our encoder E. Following recent advances
in network architecture [12, 15], our ResNet [4] design of E
differs from the architecture of D [9] in several ways.

General stage. We notice that the two architectural changes
in [12] that lead to most performance boost are separate
downsampling layers and fewer activations. Thus, we move
the skip branch of the transition residual block up to the stem
as a transition layer, and remove all activations in the residual
block unless they are between two consecutive convolutional
layers. We use leaky ReLU activation with α=0.2, and bilin-
ear downsampling instead of strided convolution [8, 9]. We
use the 1-3-1 bottleneck residual block as it is more efficient
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Figure 1. The detailed breakdown of a general stage of E.
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Figure 2. Reference-based generation results. We extract the expres-
sion, illumination, and pose coefficients from reference images (first
row) and apply them to randomly generated images (first column).

than the 3-3 block [4]. The final convolutional layer (marked
by *) in the residual block is initialized to 0 [16], and this
eliminates the need for normalization or residual rescaling [9].
We apply equalized learning rate to all convolutional layers.

Specialization. We remove bilinear downsampling from
the transition layer of the highest resolution stage; it is
otherwise identical to a general stage. Since the 4×4 stage
of the synthesis network contains only one synthesis layer,
we place one toFeat layer without leaky ReLU in the 4×4
stage of E accordingly.
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Figure 3. Style mixing results at different scales. Using the same
three images for Source A and Source B, we replace the style vectors
of images from Source A by the style vectors of images from Source
B at coarse resolutions (4×4 - 8×8), middle resolutions (16×16 -
32×32), and fine resolutions (64×64 - 256×256).

C. More Results
We show additional results in controlled generation that

display the robustness of our model and explain what control
exists in the non-conditioned z space.

Reference-based generation In Fig. 2, we task our model
with reference-based generation where we keep the identity of



Generated Image Faces generated from the same 𝑧 while varying 𝑝

Figure 4. Resampling the 3DMM coefficient vector p with the same
noise vector z shows high consistency in the background and clothes
while the face completely changes.

a generated image and swap its expression, illumination, and
pose with those of a real image. We can see that the respective
attributes from their source are all well preserved, and the
image quality does not degrade. This again demonstrates the
disentangled face generation from our model.

Feature granularity To inspect the impact of feature
variability across the layers of the decoder, we inspect the
impact of swapping features across images with the same
p. In Fig. 3, we randomly pick a 3DMM coefficient vector p
and randomly sample z’s to generate three images (the same
images for Source A and Source B). Following StyleGAN [8],
we replace some of the style vectors w+ of images from
Source A by the corresponding style vectors of images from
Source B at coarse, middle, and fine scales. As p is the same,
the overall face region will not change significantly.

At coarse scale, there is no visible change to the images
from Source A. This is expected as the high-level attributes
of the image are supposed to be determined by the p vector.
At middle scale, the images from Source A remain mostly
unchanged except finer facial features such as the hair now
resemble those in the image from Source B. At fine scale,
the images from Source A undergo more significant changes
where the color scheme that affects the background, clothes,
hair color, and skin color now resembles those in the image
from Source B. This experiment indicates that each subset of
the style vectors w+ controls a different set of features in the
generated image. We also notice that attributes controlled by
p remain unchanged at any scale, which means our model’s
p space and z space are well separated.

3DMM vector resampling with fixed noise As opposed
to the experiment conducted in the main paper where we vary
the noise z with fixed 3DMM vector p, we now vary p with
fixed z (Fig. 4). We can see that despite the drastic change
in the facial attributes from different p’s, the background
and clothes remain largely consistent with the same z. This
is another proof that the z vector has a good control of the
attributes not controlled by p.
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Figure 5. Reference-based generation results that show unexpected
skin tone change. We see that the albedo predicted by FR does not
faithfully capture the darker skin tone.

Limitations. Due to the use of a pretrained FR and RDR,
our model inevitably inherits the limitations of these models.
We find that Deep3DRecon [2] performs particularly poor on
darker skin tone, in that it tends to predict the skin tone as the
result of dim illumination. This leads to unexpected skin tone
change when editing the illumination (Fig. 5). Moreover, our
model does not provide explicit control over attributes not rep-
resented inP such as hair and eyeglasses. We believe these re-
strictions can be resolved in the future by an improved 3DMM.

References
[1] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin

Tong. Disentangled and controllable face image generation
via 3d imitative-contrastive learning, 2020. 1

[2] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia,
and Xin Tong. Accurate 3d face reconstruction with weakly-
supervised learning: From single image to image set. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pages 0–0, 2019. 1, 3

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2

[5] IEEE. A 3D Face Model for Pose and Illumination Invariant
Face Recognition, Genova, Italy, 2009. 1

[6] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative
adversarial networks with limited data. Advances in neural
information processing systems, 33:12104–12114, 2020. 1

[7] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural
Information Processing Systems, 34:852–863, 2021. 1

[8] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4401–4410, 2019. 1, 3

[9] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving the



image quality of stylegan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
8110–8119, 2020. 1, 2

[10] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transactions
on Graphics, 39(6), 2020. 1

[11] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier
Romero. Learning a model of facial shape and expression
from 4D scans. ACM Transactions on Graphics, (Proc.
SIGGRAPH Asia), 36(6):194:1–194:17, 2017. 1

[12] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichten-
hofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s.
In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11976–11986, 2022. 1

[13] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge?
In International conference on machine learning, pages
3481–3490. PMLR, 2018. 1

[14] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl:
Scaling stylegan to large diverse datasets. In ACM SIGGRAPH
2022 conference proceedings, pages 1–10, 2022. 1

[15] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10819–10829, 2022. 1

[16] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup
initialization: Residual learning without normalization. arXiv
preprint arXiv:1901.09321, 2019. 2


