

000

001 **Scale-Adaptive Feature Aggregation for Efficient Space-Time Video**

002 **Super-Resolution (Appendix)**

003

004

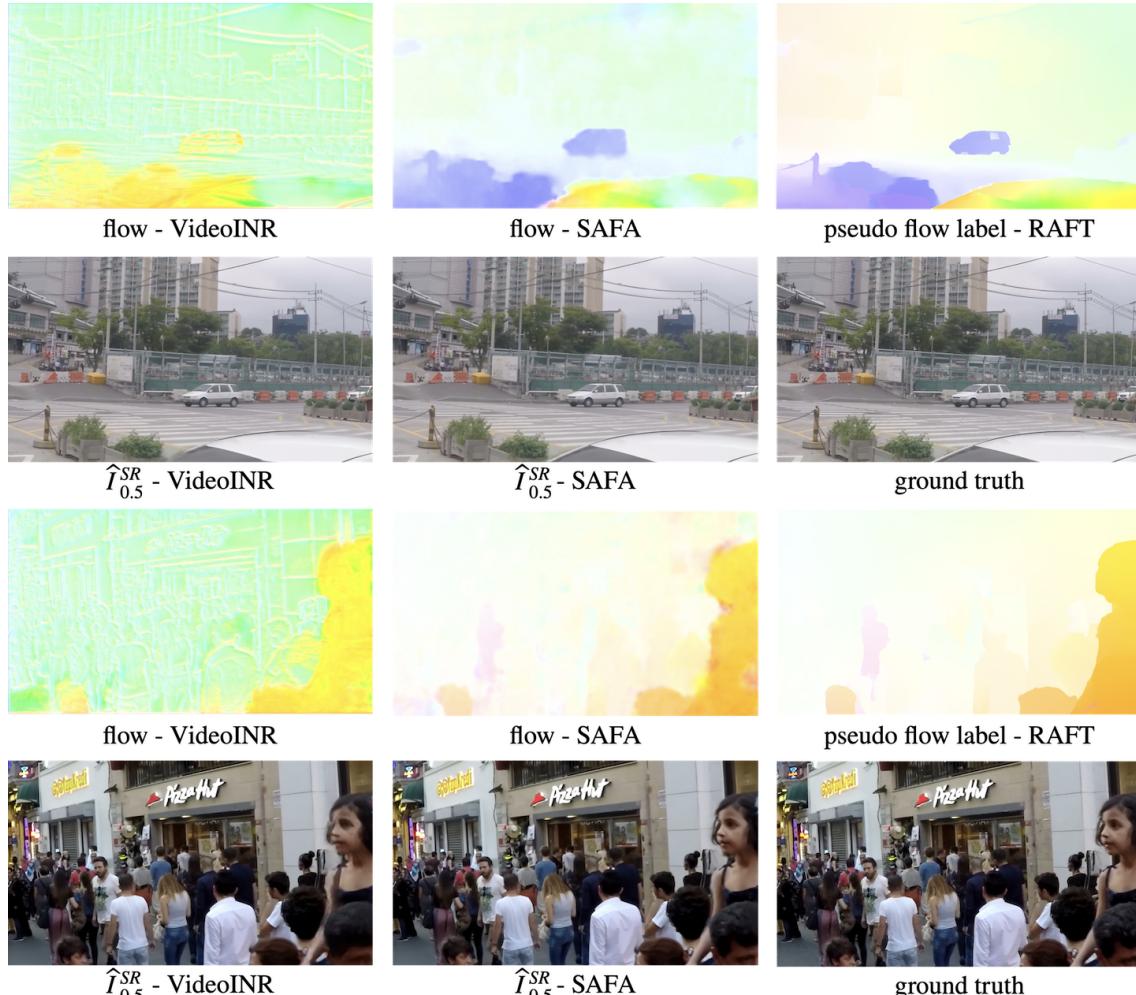


Figure 1. Visualization of the intermediate flow estimated by SAFA. The pseudo label is obtained using RAFT [6].

Societal Impact. STVSR methods can remove and synthesize frames, and the processed video may reflect different facts. This can be used by artists as a creative tool, but it may be used inappropriately. The related editing detection and reliability verification methods require further research.

1. Video Effect and Failure Case

The results of this Appendix are generated on the GoPro dataset [4]. The video demo is attached. We mainly compare SAFA with VideoINR [1] because it has state-of-the-art quantitative results. By observing the video results, we find that SAFA has an advantage over VideoINR [1] mainly when the object or camera motion is large. In addition, the recovery of regions with complex textures using SAFA is also basically better. SAFA still has two types of artifacts that affect the perception. 1) At the border of the video, some objects will move out of the screen, similar to VideoINR. At this time, it is difficult for the model to learn a reasonable transition, showing the fading in and fading out effects. Designing inpainting components may be able to remedy this shortcoming. 2) In some repetitive texture areas, such as fences, floor tiles, etc., the model may distort the lines. Such artifacts may be counteracted by adding smoothness constraints to the flow fields.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2. Architecture of Feature Extractor

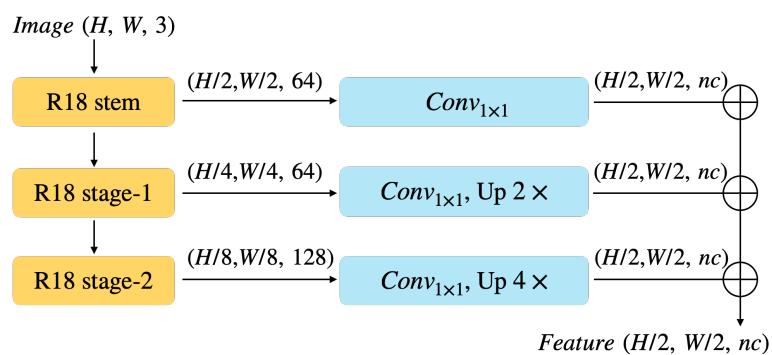


Figure 2. **Architecture of R18 Feature Extractor.** We use a 1×1 convolutional layer and bilinear up-sampling to adjust the number of channels and feature map size.

I : input image, \hat{I} : output image, t : time-step ($0 \leq t \leq 1$)

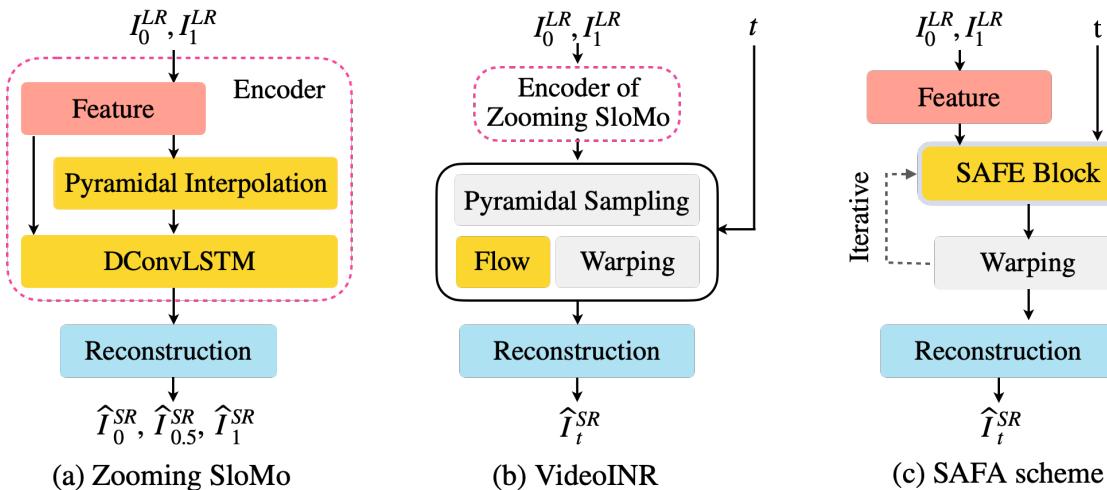


Figure 3. **Comparison of different structures.** We color blocks with similar functions the same.

3. Analysis of Intermediate Flow

Our proposed SAFA explicitly uses intermediate flows for feature propagation. To confirm that the architecture of SAFA indeed learns an optical flow-like representation, we show the visualization of approximated intermediate flow in Figure 1. We use the state-of-the-art optical flow model, pre-trained RAFT-things [6], to generate pseudo flow labels on the ground truth image and observe the difference.

We show that the intermediate flow estimated by SAFA is similar to the pseudo flow label of RAFT [6]. From the appearance, the flow pseudo label has sharper boundaries and is cleaner. This is mainly due to the difference in the definition of task-oriented flow [9] and optical flow. On the other hand, it is also partly due to the low resolution of the input of STVSR. Whereas the VideoINR [1] estimated flow is quite different. We can only see similar object edges. This demonstrates that the Zooming SloMo [7] encoder in VideoINR [1] has already undertaken part of the feature alignment. We depict the architecture of these previous methods and SAFA in Figure 3. The encoder is entangled with flow estimation. We argue that an explicit modular structure is important for designing efficient models. The intrinsic relationship of estimated flows at different time-steps is shown in Figure 4. It can be seen that SAFA maintains good consistency.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

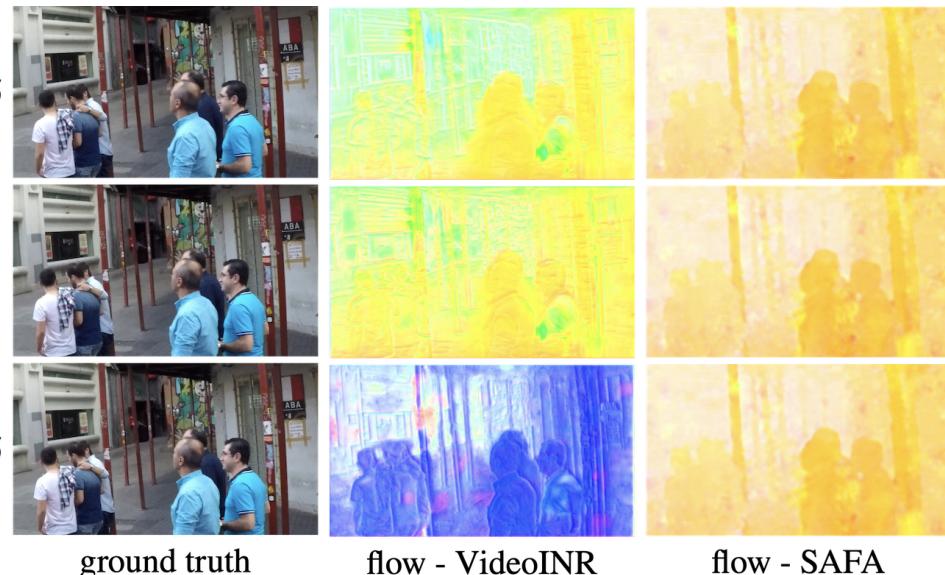


Figure 4. Visualization of the estimated flow in different time-step.

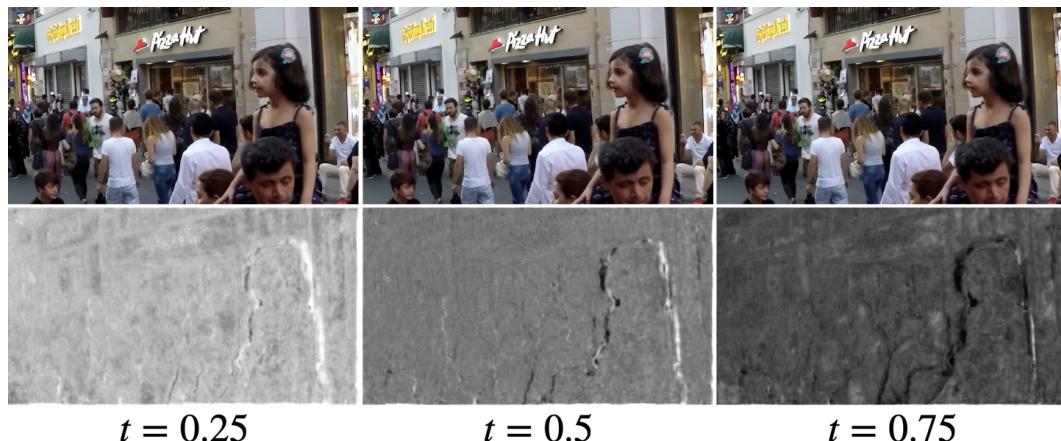
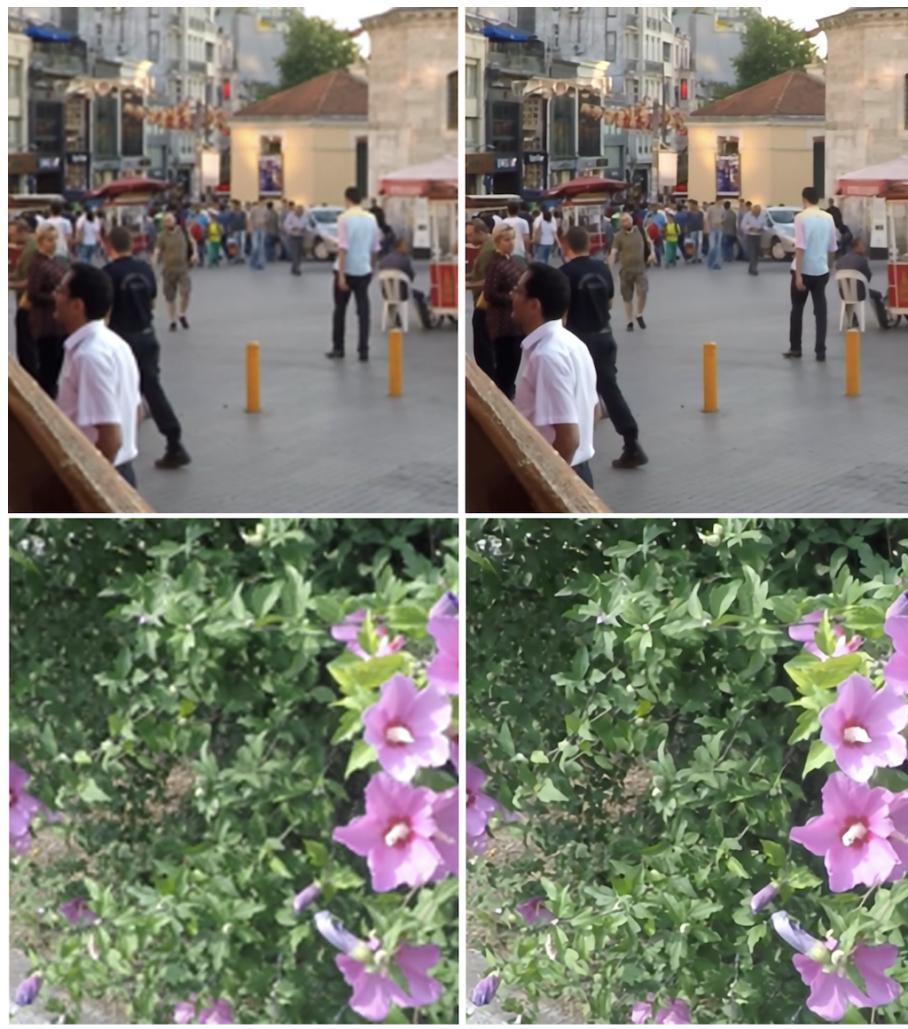


Figure 5. Visualization of generated frames and the corresponding occlusion map.

4. Analysis of Fusion Map and Refinement


In SAFA, the formula that produces the final result is:

$$\hat{I}_t^{SR} = [\mathbf{m} \odot \hat{I}_{t \leftarrow 0} + (1 - \mathbf{m}) \odot \hat{I}_{t \leftarrow 1}] + \Delta, \quad (1)$$

where m is usually called “fusion map” or “occlusion map” [2, 3, 5]. For non-occluded regions, it is used to weigh between the two results. Intuitively, when the time-step t is smaller, m is closer to 1 (visualized as white), making the model consider more the results from I_0 . The occluded area often appears at the edge of the moving objects, and the model will choose one of the two results adaptively. The visualization is shown in Figure 5. Because I_0 and I_1 are both low-resolution images, it is intuitively impossible to obtain high-resolution images simply by warping and fusing them. The visual effect without feature-based refinement Δ (reconstruction model) is shown in Figure 6.

5. Comparison with Pyramidal Design.

Scale-selection increases the flexibility (and thus reduces the burden) of hand-crafted pyramid design models. On the other, we can share parameters at different scales (Table 3, c7). We fix the scale of the 6 blocks to (0.25, 0.25, 0.5, 0.5, 1, 1)

358 Figure 6. Visualization of generated frames with/without Δ . They have a noticeable difference in image sharpness. 412
 359 413
 360 414
 361 to construct a pyramidal-like structure. It cannot scale adaptively during inference. 415
 362 416
 363 417
 364 418
 365 419
 366 420
 367 421
 368 422
 369 423
 370 424
 371 425
 372 426
 373 427
 374 428
 375 429
 376 430
 377 431

Supplementary Table 1	GoPro PSNR	Adobe240 PSNR	# Param (M)
f1: SAFA	31.28	30.97	5.0
f2: Manually Set Scale	31.04	30.73	5.0

6. Specific Training Cost

370 For these methods for comparison, we use open-sourced codes. On four Pascal TITAN X GPUs, TMNet [8] and 424
 371 VideoINR [1] take about 200 hours and 140 hours to train, respectively. While SAFA takes only 50 hours. The three 425
 372 methods use the same number of training iterations, TMNet [8] outputs 7 frames per iteration, while VideoINR [1] and 426
 373 SAFA output 3 frames at each forward pass. This is one reason why the training overhead of TMNet [8] is higher. In other 427
 374 words, TMNet undergoes more data iterations. 428
 375 429
 376 430
 377 431

432	References	486
433		487
434	[1] Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vudit Goel, Zhangyang Wang, Humphrey Shi, and Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous space-time super-resolution. In <i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</i> , 2022. 1, 2, 4	488
435		489
436		490
437	[2] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Real-time intermediate flow estimation for video frame interpolation. In <i>Proceedings of the European Conference on Computer Vision (ECCV)</i> , 2022. 3	491
438		492
439	[3] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and Jan Kautz. Super slomo: High quality estimation of multiple intermediate frames for video interpolation. In <i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</i> , 2018. 3	493
440		494
441	[4] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. In <i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</i> , 2017. 1	495
442		496
443	[5] Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In <i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</i> , 2020. 3	497
444		498
445	[6] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In <i>Proceedings of the European Conference on Computer Vision (ECCV)</i> , 2020. 1, 2	499
446		500
447	[7] Xiaoyu Xiang, Yapeng Tian, Yulun Zhang, Yun Fu, Jan P. Allebach, and Chenliang Xu. Zooming slow-mo: Fast and accurate one-stage space-time video super-resolution. In <i>IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</i> , 2020. 2	501
448		502
449	[8] Gang Xu, Jun Xu, Zhen Li, Liang Wang, Xing Sun, and Ming-Ming Cheng. Temporal modulation network for controllable space-time video super-resolution. In <i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</i> , 2021. 4	503
450		504
451	[9] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video enhancement with task-oriented flow. In <i>International Journal of Computer Vision (IJCV)</i> , 2019. 2	505
452		506
453		507
454		508
455		509
456		510
457		511
458		512
459		513
460		514
461		515
462		516
463		517
464		518
465		519
466		520
467		521
468		522
469		523
470		524
471		525
472		526
473		527
474		528
475		529
476		530
477		531
478		532
479		533
480		534
481		535
482		536
483		537
484		538
485		539