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037 Figure 1. Visualization of the intermediate flow estimated by SAFA. The pseudo label is obtained using RAFT [6]. 091
038 092
039 093
040 Societal Impact. STVSR methods can remove and synthesize frames, and the processed video may reflect different facts. 094
041 This can be used by artists as a creative tool, but it may be used inappropriately. The related editing detection and reliability 095
042 verification methods require further research. 096
043 097
044 1. Video Effect and Failure Case 098
045 099
046 The results of this Appendix are generated on the GoPro dataset [4]. The video demo is attached. We mainly compare 100
047 SAFA with VideoINR [1] because it has state-of-the-art quantitative results. By observing the video results, we find that 101
048 SAFA has an advantage over VideoINR [I] mainly when the object or camera motion is large. In addition, the recovery 102
049 of regions with complex textures using SAFA is also basically better. SAFA still has two types of artifacts that affect the 103
050 perception. 1) At the border of the video, some objects will move out of the screen, similar to VideoINR. At this time, it is 104
051 difficult for the model to learn a reasonable transition, showing the fading in and fading out effects. Designing inpainting 105
052 components may be able to remedy this shortcoming. 2) In some repetitive texture areas, such as fences, floor tiles, etc., the 106

053 model may distort the lines. Such artifacts may be counteracted by adding smoothness constraints to the flow fields. 107
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122 Figure 2. Architecture of R18 Feature Extractor. We use a 1 X 1 convolutional layer and bilinear up-sampling to adjust the number of 176
123 channels and feature map size. 177
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145 Figure 3. Comparison of different structures. We color blocks with similar functions the same. 199
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128 3. Analysis of Intermediate Flow 202
149 Our proposed SAFA explicitly uses intermediate flows for feature propagation. To confirm that the architecture of SAFA 203
150 indeed learns an optical flow-like representation, we show the visualization of approximated intermediate flow in Figure 1. 204
151 We use the state-of-the-art optical flow model, pre-trained RAFT-things [6], to generate pseudo flow labels on the ground 205
152 truth image and observe the difference. 206
153 We show that the intermediate flow estimated by SAFA is similar to the pseudo flow label of RAFT [6]. From the 207
154 appearance, the flow pseudo label has sharper boundaries and is cleaner. This is mainly due to the difference in the definition 208
155 of task-oriented flow [9] and optical flow. On the other hand, it is also partly due to the low resolution of the input of STVSR. 209
156 Whereas the VideoINR [1] estimated flow is quite different. We can only see similar object edges. This demonstrates 210
157 that the Zooming Slomo [7] encoder in VideoINR [!] has already undertaken part of the feature alignment. We depict the 211
158 architecture of these previous methods and SAFA in Figure 3. The encoder is entangled with flow estimation. We argue 212
159 that an explicit modular structure is important for designing efficient models. The intrinsic relationship of estimated flows at 213
160 different time-steps is shown in Figure 4. It can be seen that SAFA maintains good consistency. 214
161 215
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236 Figure 4. Visualization of the estimated flow in different time-step. 290
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252 Figure 5. Visualization of generated frames and the corresponding occlusion map. 306
253 307
254 4. Analvsi . 308
- . Analysis of Fusion Map and Refinement 209
256 In SAFA, the formula that produces the final result is: 310
257 >N ,\ ,\ 311
258 FRP=mo o+ (1-m)© L]+ A, (1 312
§Z§ where m is usually called “fusion map” or “occlusion map” [2, 3, 5]. For non-occluded regions, it is used to weigh between g:z
the two results. Intuitively, when the time-step ¢ is smaller, m is closer to 1 (visualized as white), making the model consider
261 . . . 315
062 more the results from IO.. The occlud.ed ar.ea gftel} appears .at th.e edge of the moving objects, and the model will 'cho.ose one 316
063 f)f'th.e t\yg resu@ts adaptlvely. Thf% V1s.uahzat10n '1s Sl'lOWII in Elgure 5. Bece'luse Iy and' I are both low.—resolutlon 1rr'1ages, 317
061 it is intuitively impossible to obtain hlgh—resolunon.lmages S}mp}y by warping and fusing them. The visual effect without 318
065 feature-based refinement A (reconstruction model) is shown in Figure 6. 319
2665, Compari ith P idal Desi 320
267 . parison wi yramida esign. 421
268 Scale-selection increases the flexibility (and thus reduces the burden) of hand-crafted pyramid design models. On the 322
269 other, we can share parameters at different scales (Table 3, ¢7). We fix the scale of the 6 blocks to (0.25, 0.25, 0.5, 0.5, 1, 1) 323
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Zzg Figure 6. Visualization of generated frames with/without A. They have a noticeable difference in image sharpness. ::2
360 414
361 to construct a pyramidal-like structure. It cannot scale adaptively during inference. 415
362 416
363 Supplementary Table 1 GoPro Adobe240 # Param a17
364 PSNR PSNR ™M) 418
365 fl: SAFA 3128 3097 5.0 M9
366 f2: Manually Set Scale  31.04  30.73 5.0 420
367 421
368 422
369 6. Specific Training Cost 423
370 For these methods for comparison, we u se open-sourced codes. On four Pascal TITAN X GPUs, TMNet [8] and 424
371 VideoINR [!] take about 200 hours and 140 hours to train, respectively. While SAFA takes only 50 hours. The three 425
372 methods use the same number of training iterations, TMNet [8] outputs 7 frames per iteration, while VideoINR [1] and 426
373 SAFA output 3 frames at each forward pass. This is one reason why the training overhead of TMNet [&] is higher. In other 421
374 words, TMNet undergoes more data iterations. 428
375 429
376 430
377 431
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