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Scale-Adaptive Feature Aggregation for Efficient Space-Time Video
Super-Resolution (Appendix)

Figure 1. Visualization of the intermediate flow estimated by SAFA. The pseudo label is obtained using RAFT [6].

Societal Impact. STVSR methods can remove and synthesize frames, and the processed video may reflect different facts.
This can be used by artists as a creative tool, but it may be used inappropriately. The related editing detection and reliability
verification methods require further research.

1. Video Effect and Failure Case
The results of this Appendix are generated on the GoPro dataset [4]. The video demo is attached. We mainly compare

SAFA with VideoINR [1] because it has state-of-the-art quantitative results. By observing the video results, we find that
SAFA has an advantage over VideoINR [1] mainly when the object or camera motion is large. In addition, the recovery
of regions with complex textures using SAFA is also basically better. SAFA still has two types of artifacts that affect the
perception. 1) At the border of the video, some objects will move out of the screen, similar to VideoINR. At this time, it is
difficult for the model to learn a reasonable transition, showing the fading in and fading out effects. Designing inpainting
components may be able to remedy this shortcoming. 2) In some repetitive texture areas, such as fences, floor tiles, etc., the
model may distort the lines. Such artifacts may be counteracted by adding smoothness constraints to the flow fields.
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2. Architecture of Feature Extractor

Figure 2. Architecture of R18 Feature Extractor. We use a 1 × 1 convolutional layer and bilinear up-sampling to adjust the number of
channels and feature map size.

Figure 3. Comparison of different structures. We color blocks with similar functions the same.

3. Analysis of Intermediate Flow
Our proposed SAFA explicitly uses intermediate flows for feature propagation. To confirm that the architecture of SAFA

indeed learns an optical flow-like representation, we show the visualization of approximated intermediate flow in Figure 1.
We use the state-of-the-art optical flow model, pre-trained RAFT-things [6], to generate pseudo flow labels on the ground
truth image and observe the difference.

We show that the intermediate flow estimated by SAFA is similar to the pseudo flow label of RAFT [6]. From the
appearance, the flow pseudo label has sharper boundaries and is cleaner. This is mainly due to the difference in the definition
of task-oriented flow [9] and optical flow. On the other hand, it is also partly due to the low resolution of the input of STVSR.
Whereas the VideoINR [1] estimated flow is quite different. We can only see similar object edges. This demonstrates
that the Zooming Slomo [7] encoder in VideoINR [1] has already undertaken part of the feature alignment. We depict the
architecture of these previous methods and SAFA in Figure 3. The encoder is entangled with flow estimation. We argue
that an explicit modular structure is important for designing efficient models. The intrinsic relationship of estimated flows at
different time-steps is shown in Figure 4. It can be seen that SAFA maintains good consistency.
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Figure 4. Visualization of the estimated flow in different time-step.

Figure 5. Visualization of generated frames and the corresponding occlusion map.

4. Analysis of Fusion Map and Refinement
In SAFA, the formula that produces the final result is:

ÎSR
t = [m � Ît←0 + (1 − m) � Ît←1] + ∆, (1)

where m is usually called “fusion map” or “occlusion map” [2, 3, 5]. For non-occluded regions, it is used to weigh between
the two results. Intuitively, when the time-step t is smaller, m is closer to 1 (visualized as white), making the model consider
more the results from I0. The occluded area often appears at the edge of the moving objects, and the model will choose one
of the two results adaptively. The visualization is shown in Figure 5. Because I0 and I1 are both low-resolution images,
it is intuitively impossible to obtain high-resolution images simply by warping and fusing them. The visual effect without
feature-based refinement ∆ (reconstruction model) is shown in Figure 6.

5. Comparison with Pyramidal Design.
Scale-selection increases the flexibility (and thus reduces the burden) of hand-crafted pyramid design models. On the

other, we can share parameters at different scales (Table 3, c7). We fix the scale of the 6 blocks to (0.25, 0.25, 0.5, 0.5, 1, 1)

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

WACV
#1638

WACV
#1638

WACV 2024 Submission #1638. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 6. Visualization of generated frames with/without ∆. They have a noticeable difference in image sharpness.

to construct a pyramidal-like structure. It cannot scale adaptively during inference.

Supplementary Table 1 GoPro Adobe240 # Param
PSNR PSNR (M)

f1: SAFA 31.28 30.97 5.0
f2: Manually Set Scale 31.04 30.73 5.0

6. Specific Training Cost
For these methods for comparison, we u se open-sourced codes. On four Pascal TITAN X GPUs, TMNet [8] and

VideoINR [1] take about 200 hours and 140 hours to train, respectively. While SAFA takes only 50 hours. The three
methods use the same number of training iterations, TMNet [8] outputs 7 frames per iteration, while VideoINR [1] and
SAFA output 3 frames at each forward pass. This is one reason why the training overhead of TMNet [8] is higher. In other
words, TMNet undergoes more data iterations.
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