
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

WACV
#1638

WACV
#1638

WACV 2024 Submission #1638. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Scale-Adaptive Feature Aggregation for Efficient Space-Time Video
Super-Resolution (Appendix)

Figure 1. Visualization of the intermediate flow estimated by SAFA. The pseudo label is obtained using RAFT [6].

Societal Impact. STVSR methods can remove and synthesize frames, and the processed video may reflect different facts.
This can be used by artists as a creative tool, but it may be used inappropriately. The related editing detection and reliability
verification methods require further research.

1. Video Effect and Failure Case
The results of this Appendix are generated on the GoPro dataset [4]. The video demo is attached. We mainly compare

SAFA with VideoINR [1] because it has state-of-the-art quantitative results. By observing the video results, we find that
SAFA has an advantage over VideoINR [1] mainly when the object or camera motion is large. In addition, the recovery
of regions with complex textures using SAFA is also basically better. SAFA still has two types of artifacts that affect the
perception. 1) At the border of the video, some objects will move out of the screen, similar to VideoINR. At this time, it is
difficult for the model to learn a reasonable transition, showing the fading in and fading out effects. Designing inpainting
components may be able to remedy this shortcoming. 2) In some repetitive texture areas, such as fences, floor tiles, etc., the
model may distort the lines. Such artifacts may be counteracted by adding smoothness constraints to the flow fields.

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

WACV
#1638

WACV
#1638

WACV 2024 Submission #1638. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2. Architecture of Feature Extractor

Figure 2. Architecture of R18 Feature Extractor. We use a 1 × 1 convolutional layer and bilinear up-sampling to adjust the number of
channels and feature map size.

Figure 3. Comparison of different structures. We color blocks with similar functions the same.

3. Analysis of Intermediate Flow
Our proposed SAFA explicitly uses intermediate flows for feature propagation. To confirm that the architecture of SAFA

indeed learns an optical flow-like representation, we show the visualization of approximated intermediate flow in Figure 1.
We use the state-of-the-art optical flow model, pre-trained RAFT-things [6], to generate pseudo flow labels on the ground
truth image and observe the difference.

We show that the intermediate flow estimated by SAFA is similar to the pseudo flow label of RAFT [6]. From the
appearance, the flow pseudo label has sharper boundaries and is cleaner. This is mainly due to the difference in the definition
of task-oriented flow [9] and optical flow. On the other hand, it is also partly due to the low resolution of the input of STVSR.
Whereas the VideoINR [1] estimated flow is quite different. We can only see similar object edges. This demonstrates
that the Zooming Slomo [7] encoder in VideoINR [1] has already undertaken part of the feature alignment. We depict the
architecture of these previous methods and SAFA in Figure 3. The encoder is entangled with flow estimation. We argue
that an explicit modular structure is important for designing efficient models. The intrinsic relationship of estimated flows at
different time-steps is shown in Figure 4. It can be seen that SAFA maintains good consistency.

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

WACV
#1638

WACV
#1638

WACV 2024 Submission #1638. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Visualization of the estimated flow in different time-step.

Figure 5. Visualization of generated frames and the corresponding occlusion map.

4. Analysis of Fusion Map and Refinement
In SAFA, the formula that produces the final result is:

ÎSR
t = [m � Ît←0 + (1 − m) � Ît←1] + ∆, (1)

where m is usually called “fusion map” or “occlusion map” [2, 3, 5]. For non-occluded regions, it is used to weigh between
the two results. Intuitively, when the time-step t is smaller, m is closer to 1 (visualized as white), making the model consider
more the results from I0. The occluded area often appears at the edge of the moving objects, and the model will choose one
of the two results adaptively. The visualization is shown in Figure 5. Because I0 and I1 are both low-resolution images,
it is intuitively impossible to obtain high-resolution images simply by warping and fusing them. The visual effect without
feature-based refinement ∆ (reconstruction model) is shown in Figure 6.

5. Comparison with Pyramidal Design.
Scale-selection increases the flexibility (and thus reduces the burden) of hand-crafted pyramid design models. On the

other, we can share parameters at different scales (Table 3, c7). We fix the scale of the 6 blocks to (0.25, 0.25, 0.5, 0.5, 1, 1)

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

WACV
#1638

WACV
#1638

WACV 2024 Submission #1638. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 6. Visualization of generated frames with/without ∆. They have a noticeable difference in image sharpness.

to construct a pyramidal-like structure. It cannot scale adaptively during inference.

Supplementary Table 1 GoPro Adobe240 # Param
PSNR PSNR (M)

f1: SAFA 31.28 30.97 5.0
f2: Manually Set Scale 31.04 30.73 5.0

6. Specific Training Cost
For these methods for comparison, we u se open-sourced codes. On four Pascal TITAN X GPUs, TMNet [8] and

VideoINR [1] take about 200 hours and 140 hours to train, respectively. While SAFA takes only 50 hours. The three
methods use the same number of training iterations, TMNet [8] outputs 7 frames per iteration, while VideoINR [1] and
SAFA output 3 frames at each forward pass. This is one reason why the training overhead of TMNet [8] is higher. In other
words, TMNet undergoes more data iterations.

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

WACV
#1638

WACV
#1638

WACV 2024 Submission #1638. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit Goel, Zhangyang Wang, Humphrey Shi, and Xiaolong Wang. Videoinr:

Learning video implicit neural representation for continuous space-time super-resolution. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 1, 2, 4

[2] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Real-time intermediate flow estimation for video frame
interpolation. In Proceedings of the European Conference on Computer Vision (ECCV), 2022. 3

[3] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and Jan Kautz. Super slomo: High quality
estimation of multiple intermediate frames for video interpolation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 3

[4] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 1

[5] Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 3

[6] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020. 1, 2

[7] Xiaoyu Xiang, Yapeng Tian, Yulun Zhang, Yun Fu, Jan P. Allebach, and Chenliang Xu. Zooming slow-mo: Fast and accurate one-stage
space-time video super-resolution. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 2

[8] Gang Xu, Jun Xu, Zhen Li, Liang Wang, Xing Sun, and Ming-Ming Cheng. Temporal modulation network for controllable space-time
video super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. 4

[9] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video enhancement with task-oriented flow. In Interna-
tional Journal of Computer Vision (IJCV), 2019. 2

5


	. Video Effect and Failure Case
	. Architecture of Feature Extractor
	. Analysis of Intermediate Flow
	. Analysis of Fusion Map and Refinement
	. Comparison with Pyramidal Design.
	. Specific Training Cost

