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A. Visualizations
In this section, we present visualizations of some false

negative moments that have been eliminated by our Se-
manntic Boundary Detection (SBD). Figure 1 illustrates the
results, where the first column displays the corresponding
video of the original single target moment, the second col-
umn shows the false negative moment found within the
same video, and the third column shows the false negative
moment discovered in other videos of the same batch. It is
evident that the identified false negative moments align with
the query description. Figure 2 illustrates the prediction re-
sults for some additional multi-target samples. Our method
shows improved precision in finding other false negative
moments compared to our baseline [15], due to the utiliza-
tion of multi-target training enabled by Semantic Fusion
Augmentation (SFA) and the improved embedding space
achieved through Intra-Video Contrastive Loss and SBD.

B. Implementation Details
The hyperparameters for each dataset and their corre-

sponding video encoders are shown in Table 1. Other im-
plementation details will be provided in this section.

For Charades and ActivityNet, we adopt the approach
proposed in previous work [15] to generate the 2D proposal
map from the video feature v. Similarly, for QVHighlights,
we use the same configuration as ActivityNet to generate
the 2D proposal map. However, instead of using Con-
vNet [15] to aggregate the features of the proposal, we
use ResNet-18 [4] as the proposal encoder for all datasets.
Our ResNet-18 has some modifications: All convolutions in
ResNet-18 are replaced by masked convolutions [23] used
in ConvNet. The first convolution has a kernel size of 5, the
max-pooling layer is removed, the stride sizes of all con-
volutions are set to 1, and the channel sizes of all convolu-
tions are set to 256 for Charades and ActivityNet, and 512
for QVHighlights. As for the language encoder, we em-
ploy DistilBert [12] provided by HuggingFace [16]. We use
the pre-trained model "distilbert-base-uncased"
following [15]. Following the previous work [15, 23], our

predictions are generated using non-maximum suppression,
which removes overlapped proposals with low confidence.

To prevent GPU memory leakage, we limit the number
of queries per video to a maximum of 7, resulting in a to-
tal of at most B × 7 video query pairs. Before applying
SFA, the candidate target moment has a probability of pd
being down-sampled to half the length by choosing the odd
video sequence features along the time axis. After down-
sampling, the candidate target moment has the probability
of pa being mixed with another random moment. If it is not
possible to find a non-overlapping moment, the SFA process
is skipped. The mixup ratio between the target moment and
the random moment is set to 9 : 1 for all experiments to
ensure that the augmentated moment still shares most of the
semantics with the original target moment.

We utilize AdamW [10] as an optimizer. In all exper-
iments except QVHighlights, the contrastive loss weights
λinter and λinter are decayed by a factor of 0.01 at the be-
ginning of the 7th epoch. The threshold for non-maximum
suppression is set to 0.5 in all experiments. The experiments
involving ActivityNet with the I3D feature are carried out
using 2×NVIDIA RTX 3090. For all other experiments, a
single NVIDIA RTX 3090 is utilized.

For Charades and ActivityNet, we report the best perfor-
mance with respect to R@1,IoU=0.7 + R@(5,5),IoU=0.5.
In the case of QVHighlights, we identify the best model
based on the assessed mAP@avg on the validation set. In
addition, we employ this model to generate predictions for
submission to the QVHighlights evaluation server.

C. Ablation Details

For Table 8 in the paper, we evaluated various settings.
This involved testing fixed thresholds of {0.5, 0.7, 0.9}, as
well as two types of predefined acceptance rate schedulers:
linearly increasing from 0 to 1 throughout training, and
stepping from 0 to 1 at the midpoint of the training epoch.
The reported results are based on the optimal results in
terms of R@1,IoU=0.7 + R@(5,5),IoU=0.5 for each com-
bination.
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Figure 1. False negative samples from the ActivityNet training set (first row) and the Charades training set (second row).

Figure 2. Visualization of some prediction results. It should be noted that MMN∗ is implemented in our code base.



Dataset Charades-STA ActivityNet QVHighlights

Feature VGG C3D I3D C3D I3D
SlowFast
+ CLIP

Model lr 1e−3 1e−3 1e−3 1e−3 1e−3 1e−3

DistilBert lr 1e−5 1e−5 1e−5 5e−5 5e−5 1e−5

λinter 0.05 0.1 0.1 0.05 0.05 0.5

mqv 0.3 0.3 0.3 0.3 0.3 0.3

τqv 0.1 0.1 0.1 0.1 0.1 0.1

mvq 0.3 0.3 0.3 0.3 0.3 0.3

τvq 0.1 0.1 0.1 0.1 0.1 0.1

λintra 0.01 0.05 0.1 0.01 0.01 0.5

mvv 0.2 0.2 0.2 0.2 0.2 0.0

τvv 0.05 0.05 0.05 0.05 0.05 0.05

N 16 16 16 64 64 64

Batch size 48 48 48 24 16 24

α 1.0 0.25 1.0 1.0 0.5 1.0

Bert fire start [15] 1 4 1 5 5 1

Milestone [15] 9 8 8 8 8 ✗

de 256 256 256 256 256 512

pa 0.25 0.25 0.25 0.25 0.25 0.25

pd 0.5 0.5 0.0 1.0 0.0 0.0

Dual space [15] ✓ ✓ ✓ ✓ ✓ ✗

Table 1. Hyper-parameters for each dataset and the corresponding video feature.

Level Augmentation R@1 R@5 R@(5,5)
IoU=0.7 IoU=0.7 IoU=0.7

Frame Cutmix 25.82 57.37 28.90
Frame Mixup 27.59 57.42 28.68
Feature Cutmix 26.94 57.01 29.10
Feature Mixup 27.05 58.35 29.72

Table 2. Ablation of augmentation on Charades using VGG fea-
tures. Please note that the pre-trained VGG weights for Charades
are unavailable. Therefore, we utilize the built-in PyTorch weights
for the experiments in this table.

For Table 2, we examined various configurations of
mixup and cutmix operations. Regarding mixup, we as-
sessed mixing rates such as {1 : 9, 3 : 7, 5 : 5} between
background features (frames) and target features (frames).
In the case of cutmix at the feature level, we directly re-
placed α% of the elements in the background features with
the corresponding target features. For cutmix at the frame
level, we directly substituted a random square area of size
α2 in the original frame with the corresponding area from
the target frame. We experimented with different values of
α, specifically in the range {0.5, 0.7, 0.9} and reported the
best result in terms of R@1,IoU=0.7 + R@(5,5),IoU=0.5
for each combination.

D. Illustration of Challenge

Figure 3 illustrates the potential challenge of achieving
a simultaneous improvement on both multi-target metric

R@(5,5) and single-target metric R@1.

E. Supplemental Experiments

Table 4, 5 present the ablation results of Charades with
I3D feature and ActivityNet with I3D feature.

We present the evaluation results of our SFABD on com-
monly used datasets with other video encoders in Tabs. 3,
6 and 7 to facilitate future comparisons. It can be seen that
our SFABD also achieves comparable results in Charades
and ActivityNet using other video encoders.

Table 8 shows the result of using different proposal en-
coders in ActivityNet with the C3D feature. Similarly to the
results of Table 7 in our paper, the performance improve-
ment of our SFABD compared to MMN is greater when
ResNet-18 is used. This indicates that our method has the
potential to yield even greater performance boosts utilizing
a better proposal encoder.

Due to the submission limits of the QVHighlights evalu-
ation server, we conducted our ablation study for QVHigh-
lights only on the validation set. As shown in Table 9, our
SFABD outperforms previous methods by a significant mar-
gin in mAP@avg. This aligns with the results obtained on
the testing set (Table 3 of our paper). Unlike [11], we do
not utilize audio as an additional input source. We leverage
the multi-target information through intra-video contrastive
learning, which is the key difference between our method
and previous self-attention-based approaches. Such a self-
attention-based approach lacks intra-video supervision dur-



Figure 3. This figure shows an imaginary sample with its original label, recolleccted labels and two contrasting imaginary prediction results
of a VMR model similar to the situation of the first example of Figure 2. The first row illustrates the imaginary prediction results of a model
that learns a single-target prediction bias due to single-target training. Although R@1 is high, R@(5,5) remains low, highlighting that only
evaluating the single-target performance with the original label neglects the multi-target performance required for multi-target VMR. The
second row shows the imaginary prediction results of the model that has undergo multi-target training, a more diverse prediction results
can be achieved. Although R@(5,5) is high, R@1 remains low because the most confident prediction does not align with the original label.
In order to achieve simultaneous improvement in both R@(5,5) and R@1, a model not only needs to generate diverse predictions that
capture all target moments, but also needs to make sure that the most confident prediction aligns with the original label. However, since
the multi-target labels should hold equal priority during multi-target training, demanding such alignment property is unreasonable.

Method
C3D video features I3D video features

R@1 R@5 R@1 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

DRN [19] 45.40 26.40 88.01 55.38 53.09 31.75 89.06 60.05

VSLNet [20] 47.31 30.19 - - - - - -
MS-2D-TAN [22] 41.10 23.25 81.53 48.55 56.64 36.21 89.06 61.13

DTG [25] - - - - 60.19 39.38 87.53 66.91

DTG-SPL [24] - - - - 60.05 40.13 87.34 67.12

BMRN [13] 45.93 28.37 89.12 57.19 63.09 42.46 92.62 67.65

SFABD (Ours) 47.86 30.51 85.48 59.96 60.09 40.21 90.36 68.65

Table 3. Evaluation results on Charades with the C3D feature and the I3D feature.

ing the video sequence encoding process, which results in
a degradation of the model’s capability. Furthermore, Table
10 shows the method ablation in the QVHighlights valida-
tion set. We observe that even though QVHighlights al-
ready contains many multi-target samples, using augmenta-
tion can still lead to a slight improvement in mAP@avg.
We attribute the slight improvement to the augmentation
of the minority single-target samples in QVHighlights. By
augmenting these single-target samples, we can further in-
crease the diversity of multi-target samples. Additionally,

we find that incorporating intra-video contrastive loss leads
to significant performance gain. This result substantiates
our early statement that utilizing the information in multi-
target labels is crucial to achieve better multi-target VMR
performance. We also find that SBD does not contribute
much in QVHighlights, and we believe the main reason
is that QVHighlights is a dataset with high-quality multi-
target labels and diverse queries. Consequently, the proba-
bility of encountering false negative moments in a batch is
significantly lower.



Linter SFA Lintra SBD
R@1 R@5 R@(5,5)

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

✓ 58.57 38.90 88.56 68.29 63.26 35.18
✓ ✓ 58.13 38.33 88.59 66.58 63.90 36.12
✓ ✓ 58.81 39.88 89.40 68.65 62.92 35.70
✓ ✓ ✓ 59.25 39.53 89.49 69.30 63.40 37.10
✓ ✓ ✓ ✓ 60.09 40.21 90.36 68.65 65.14 36.16

Table 4. Method Ablation on Charades-STA with the I3D Feature.

Linter SFA Lintra SBD
R@1 R@5 R@(5,5)

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

✓ 48.27 29.92 80.23 66.58 59.55 42.41
✓ ✓ 48.90 30.75 79.49 63.90 60.65 42.66
✓ ✓ 48.46 30.21 81.01 67.12 59.77 42.90
✓ ✓ ✓ 49.13 30.84 81.02 65.70 60.37 42.76
✓ ✓ ✓ ✓ 49.22 30.97 81.03 66.81 60.79 43.77

Table 5. Method ablation on ActivityNet with the I3D feature.

Method R@1 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MCN [1] 17.46 8.01 48.22 26.73
DRN [19] 42.90 23.68 87.80 54.87

2D-TAN [23] 39.70 23.31 80.32 51.26
MS-2D-TAN [22] 45.65 27.20 86.72 56.42

CBLN [8] 43.67 24.44 88.39 56.49
FVMR [3] 42.36 24.14 83.97 50.15
MMN [15] 47.45 27.15 83.82 58.09

QD-DETR [11] 52.77 31.13 - -
SFABD (Ours) 50.23 31.38 85.62 61.07

Table 6. Evaluation results on Charades with the VGG feature.

Method
R@1 R@5

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MCN [1] 21.36 6.43 53.23 29.70
CTRL [2] 29.01 10.34 59.17 37.54
QSPN [17] 33.26 13.43 62.39 40.78
SCDM [18] 36.75 19.86 64.99 41.53
DRN [19] 45.45 24.36 77.97 50.30
MSA [21] 48.02 31.78 78.02 63.18

2D-TAN [23] 44.51 26.54 77.13 61.96
CPNet [7] 40.56 21.63 - -
CBLN [8] 48.12 27.60 79.32 63.41
FVMR [3] 45.00 26.85 77.42 61.04
MMN [15] 48.04 29.68 79.49 65.12
TACI [14] 45.50 27.23 - -

MS-2D-TAN [22] 46.16 29.21 78.80 60.85
STCM-Net [5] 46.23 29.04 78.43 63.46

BMRN [13] 48.47 31.15 81.37 64.44
SFABD (Ours) 49.00 31.10 80.82 65.55

Table 7. Evaluation results on ActivityNet with the C3D feature.

Method Proposal
Encoder

R@1 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MMN ConvNet 48.59 29.26 79.50 64.76
MMN† ConvNet 47.65 29.20 79.62 65.95
SFABD ConvNet 48.80 30.62 79.94 64.95

MMN† ResNet-18 48.69 29.39 80.20 65.06
SFABD ResNet-18 49.00 31.10 80.82 65.55

Table 8. Evaluation results on ActivityNet with the C3D feature
and different proposal encoders. ConvNet is the encoder officially
used by MMN [15]. Note that † denotes that the implementation
is based on our code base.

Method mAP@0.5 mAP@0.75 mAP@avg

momentDETR [6] - - 36.30

UMT† [9] - - 38.59

QD-DETR† [11] 62.23 41.82 41.22
SFABD (Ours) 63.09 45.99 45.65

Table 9. Evaluation results on the QVHighlights validation set.
The symbol † indicates that the source feature includes video and
audio. Otherwise, the input feature consists of video only.

Linter SFA Lintra SBD mAP@avg
✓ 43.79
✓ ✓ 44.17
✓ ✓ 44.85
✓ ✓ 44.40
✓ ✓ ✓ 45.64
✓ ✓ ✓ ✓ 45.65

Table 10. Method ablation on QVHighlights validation set.
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