
Synthesizing Anyone, Anywhere, in Any Pose
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A. Experimental Details
All models are trained with Pytorch 1.12 [11] on 4

NVIDIA A100-80GB. FID and FIDCLIP are computed with
Torch Fidelity [10]. For qualitative examples, we use multi-
modal truncation [8] for sampling diverse high quality sam-
ples. TriA-GAN is computationally efficient, where Con-
fig E processes ∼ 25 images per second on an NVIDIA
RTX 3090 for single-image inference with unoptimized Py-
torch [11]. For computing OKS, we use the VITPose-H*
trained on COCO [6], AI Challenger, MPII and CrowdPose

Discriminator Architecture We use identical discrimi-
nators architectures for the different resolutions. Each Dℓ

(inputting features from the projection Pℓ) consists of three
convolutions with 512 channels, where the output of Dℓ is
half the spatial resolution of Pℓ. We use spectral normaliza-
tion for each convolution, and each convolution is followed
by BatchNorm2d [4] and LeakyReLU [7], except the last.
In total, the discriminator has 5.3M trainable parameters
per feature network. For convolutional feature networks,
we upsample the image to 288 × 160, whereas for ViT we
upsample/downsample to 224× 224. —

Generator Architecture Our generator architecture is
similar to the architecture used by [2] with the modifications
stated in the main paper and the following. We change the
operation order of each convolution to instance normaliza-
tion → style modulation → convolution. We use exponen-
tial moving average (EMA) [1] for the generator parameters
with a warmup period following [5].

Training Hyperparameters Experimental hyperparame-
ters are given in Table 1.

B. Cleaning the FDH Dataset
We clean the FDH dataset by refining the keypoint an-

notations with the top-down pose estimation model VIT-
Pose [12] 1. VITPose [12] estimates 17 keypoints following

1We use the VITPose-H* trained on COCO [6], AI Challenger, MPII
and CrowdPose

the COCO [6] format given the image from the FDH dataset
and the minimal enclosing bounding box of the embedding
mask (named E mask in the FDH dataset). Given the origi-
nal keypoints and the new keypoints from VITPose, we se-
lect one of them given how well the annotation matches the
DensePose annotation (from CSE [9]) in the FDH dataset.
Specifically, by using pixel-to-vertex correspondences we
segment each surface pixel into a semantic body part 2.
Then, we count the number of keypoints matches to the cor-
rect body part (e.g. the keypoint ”eye” should match to the
body part ”head”). The annotation with the highest percent-
age correct matches is selected. From this selection, 19,722
of 30K images are updated for the validation dataset, and
1,199,927 out of 1,829,496 images in the training dataset
are updated.

C. Qualitative Examples of Different Discrimi-
nator Feature Networks

The generated images are given in Figure 1.

D. Random Generated Examples and Compar-
ison Surface-Guided GANs

Randomly selected images comparing TriA-GAN to SG-
GAN [2] are given in the following figures: Figure 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18.

E. TriA-GAN vs. SG-GANs for Anonymization

We have integrated TriA-GAN in DeepPrivacy2 [2] to
support anonymization. Figure 21 compares TriA-GAN to
Surface-Guided GANs [3] (DeepPrivacy2 variant [2]). Note
that the majority of pedestrians are not anonymized by SG-
GAN, as DensePose fails to detect pedestrians further away
from the camera. In addition, we note that the synthesis
quality of TriA-GAN is notably better for all pedestrians in
the scene.

2We use an open source semantic segmentation of the SMPL model,
found here.

1

https://github.com/ViTAE-Transformer/ViTPose/blob/ec43a105e4a1f3b91ff77ec71a6f49a7501503af/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_huge_coco_256x192.py
https://github.com/ViTAE-Transformer/ViTPose/blob/ec43a105e4a1f3b91ff77ec71a6f49a7501503af/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_huge_coco_256x192.py
https://raw.githubusercontent.com/Meshcapade/wiki/main/assets/SMPL_body_segmentation/smpl/smpl_vert_segmentation.json


Table 1. Training hyperparameters. * Batch size/channel size is given per resolution, where ”18” refers to the resolution 18×10. † Decoder
is symmetric.

Config A-D Config E
Adam parameters lr=0.002, β1 = 0.0, β2 = 0.099 Same
GPUs 4x A100-80GB 8x A100-80GB
Batch size* 18: 512, 36: 512, 72: 512 18: 1024, 36: 1024, 72: 1024, 144: 512, 288: 128
EMA 0.9976 Same
Discriminator trainable parameters 5.3M per feature network Same
Data Augmentation Horizontal flip Same
Number of images seen by the discriminator 50M each resolution 18: 300M, 36: 200M, 72: 160M, 144: 110M, 288: 110M
Generator parameters (72× 40) (Config A-D) 62.2M 110.4M
Generator parameters (288× 160) Not trained 124.2M
Convolution Channels* 18: 512, 36: 512, 72: 512, 144: 256, 288: 128 Same
Number of residual blocks per generator encoder block † 1 2
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Figure 1. Generated images with Config B using different feature networks stated below each image. Images are given in full resolution
(72× 40), and we recommend the reader to zoom in.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 2. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 3. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 4. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 5. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 6. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 7. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 8. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 9. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 10. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 11. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 12. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 13. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 14. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 15. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 16. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 17. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 18. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 19. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original (b) Condition (c) SG-GAN (d) SG-GAN (e) SG-GAN (f) TriA-GAN (g) TriA-GAN (h) TriA-GAN

Figure 20. Random generated examples from FDH [2] comparing TriA-GAN to SG-GAN [2]. Note that all examples are generated with
multi-modal truncation. Surface map is not used by TriA-GAN.



(a) Original Image

(b) Anonymized with DeepPrivacy2 [2]

(c) Anonymized with TriA-GAN

Figure 21. Comparison of anonymization with TriA-GAN vs. SG-GAN [3] trained following DeepPrivacy2 [2].
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