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1. Connection between DDIBs and Uncondi-
tional Image Generation

In this section, we provide a general analysis of Dual

Diffusion Implicit Bridges (DDIBs) [9] and their connec-

tion to unconditional image generation. We first note that

with a proper hyperparameter, a particular sampling pro-

cess of diffusion model, denoising diffusion implicit model

(DDIM) is an ordinary differential equation (ODE) process

where the output is deterministically provided given the in-

put noise. Leveraging the DDIM and trained diffusion mod-

els, the noise can be translated into the image through the

reverse process of diffusion models pθ(xt−1|xt), where xt

is a perturbed image x0 with a time step t. Notably, DDIM

can run in the forward direction pθ(xt|xt−1) to get the noise

from the image. Since pθ(xt|xt−1) is also deterministic in

DDIM, the sampled noise can be used as a latent of the im-

age.

Recently, Su et al. [9] propose an unpaired domain trans-

lation method, Dual Diffusion Implicit Bridges (DDIBs),

which leverages the source diffusion models εsrc and target

diffusion models εtrg to get aligned image pairs from source

and target domain. The source model εsrc runs DDIM sam-

pling in the forward direction to get the latent noise xsrc
T

from the input image of the source domain xsrc
0 . Then,

from the xsrc
0 , the target model εtrg runs DDIM sampling

in the reverse direction to get an image xtrg
0 from the xsrc

T .

Through the above processes, DDIBs prove that xtrg
0 is se-

mantically aligned with the xsrc
0 , without requiring a joint

training of source and target pairs.

From the DDIBs, it can be derived that given the same

initial noise xT , the source model εsrc and the target model

εtrg can generate aligned images, xsrc
0 and xtrg

0 , by running

the deterministic DDIM sampling process in the reverse

direction. As a result, unconditional generation from the

same initial noise can be interpreted as a domain translation

between the source and target model, generating semanti-

cally aligned images. From this point of view, the proposed

method, Self-Distillation-based Fine-Tuning (SDFT), can

generate a more diverse and more aligned image with the

Figure 1. Randomly selected images from a limited AAHQ dataset

for the training of diffusion models in the main manuscript.

source model than the Naı̈ve Fine-Tune model, as shown in

the main manuscript.

2. Explanation for Preparing Dataset

We utilize source diffusion models pretrained on FFHQ,

which has 70K diverse real faces with various attributes.

For the target limited datasets, we utilize MetFaces [2],

which has 1,336 high-quality portraits. Due to the limited

samples and inherent biases, MetFaces do not or scarcely

contain diverse facial attributes (e.g. smiling with teeth,

sunglasses, various hairstyles etc.). We further exclude 10

samples which include glasses from the MetFaces for the

more challenging scenario. For another target dataset us-

ing the same source dataset, we utilize AAHQ [5] which

contains 25k high-quality artistic faces. However, AAHQ

is a sufficiently large and diverse dataset. To simulate the

limited, biased dataset, we select images from AAHQ using

CLIP [8] following the nie et al. [7]. Specifically, we mea-

sure the cosine similarity of embedding vectors of CLIP be-

tween AAHQ images and the prompt “A realistic painting
of an expressionless man without glasses ”. Then by thresh-

olding the similarity and manually excluding some misclas-

sified images, we get 1,437 limited AAHQ images. As de-

scribed in nie et al. [7], using CLIP similarity for prepar-

ing datasets is efficient and effective for selecting datasets
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based on the natural language without labor-intensive work.

Fig. 1 shows the randomly selected images from a limited

AAHQ dataset. Note that even though it contains a similar

number of images as MetFaces, it contains more various im-

ages such as various skin colors, and various emotions. For

example, MetFaces contains the faces of medieval works

of art, so most samples consistently show similar styles of

painting and the style of painting of the time, such as smil-

ing a little in most samples. However, despite using CLIP to

select a limited and biased dataset in AAHQ, it lacks biases

such as picture style and expressions.

3. Training Details
We provide additional details for training diffusion mod-

els in the main manuscript. We use the lighter version of

ADM [1] for the baseline model in all experiments and use

default settings. To implement the SDFT, we use 4 hyperpa-

rameters that define the in Tab. 1. Note that since the output

from the auxiliary input drastically collapses as the timestep

increases, we set higher γaux for all experiments. The vi-

sualization of w(t) used for SDFT according to different

gamma values is provided in Fig. 2.

Datasets MetFaces AAHQ

λdistill 0.1 0.1

λaux 0.1 0.3

γdistill 3 50

γaux 3 50

Table 1. Hyperparameters for SDFT training.

Figure 2. Different weightings according to hyperparameter γ.

4. Experimental Details in Domain Translation
For all domain translation methods [6, 10], rather than

editing in all diffusion time steps, authors used partial edit-

ing time steps for the best trade-off between realistic and

faithful. Note that successful domain translation should be

realistic to fit the style of the target domain and faithful to

ensure that the various attributes from the input image are

accurately preserved. The larger the editing time steps, the

more realistic the translated outputs, but the less faithful it

becomes, losing the crucial attributes from the source im-

ages. As a result, various domain translation methods gen-

erally adopt an editing range of 0.5T in their experiments

for the best trade-off between realism and faithfulness. Fol-

lowing this, in the main manuscript, we adopt an editing

range of 0.5T for all experiments on MetFaces. For AAHQ

experiments, we found that an editing range of 0.5T is less

realistic, thus we increase the editing range into 0.625T for

all experiments on AAHQ. For the EGSDE [10], we train

domain classifier for domain-independent energy function

using 10K FFHQ [3] samples and each training datasets

(entire MetFaces dataset or limited AAHQ dataset used for

training of diffusion models). We used the official training

code provided by the author, with 1500 and 4500 training it-

erations, respectively. For the domain-specific energy func-

tion, we use a downsampler with a downsampling factor of

32. For the comprehensive comparison, we provide more

results of domain translation in Figs. 3 and 4.

5. Experimental Details in Text-Guided Image
Manipulation

In the main manuscript, we utilize Asyrp [4] for the text-

guided image manipulation method. We use officially pro-

vided training and inference code to implement Asyrp and

use training step 50 and inversion step 100 in all experi-

ments. We utilize 100 training images from the MetFaces

and AAHQ for Asyrp and the training epoch is set to 5.

However, we found that in some facial expressions such as

sad, angry, and old, training epoch 5 results in a bad bias

that the manipulated faces get too old. As a result, we set the

training epoch as 3 for these facial expressions. The editing

range is set to 0.5T . For quantitative evaluation, we use 500

and 400 test images for MetFaces and AAHQ, respectively,

and use 5 scripts (smiling, sad, angry, young and old). For

the comprehensive comparison, we provide more results of

text-guided translation in Figs. 5 and 6 using text guidance

smiling, sad, angry, young, old, man, and woman. Overall,

ours(SDFT) outperforms for the various expressions, even

though the input image is not close to the real human face,

while successfully preserving the identities. We note that

the provided results are not included in the training datasets

for Asyrp.

6. More Results on Unconditional Image Gen-
eration

In Fig. 7, we provide more samples from unconditional

image generation for the comprehensive comparison. As

described in Sec. 1, the images generated from the same ini-

tial noise have aligned semantics. Since SDFT can preserve

more diverse information from the source model, SDFT can



Figure 3. Domain translation outputs using SDEdit and ILVR with fine-tuned diffusion models.

generate more semantically aligned, diverse images from

unconditional image generation.
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Figure 4. Domain translation outputs using EGSDE with fine-
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Figure 5. Various results of text-guided image manipulation, where the input is close to the human face.



Figure 6. Various results of text-guided image manipulation, where the input is not relatively close to the human face.



Figure 7. Various results of unconditional image generation. Im-

ages in each row are generated from the same initial noise.


