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Additional to our main paper, we provide supplemen-
tary material. The following results explore the generaliza-
tion capability of BoosterSHOT, the performance of HAM
compared to other attention mechanisms, and ablations re-
lated to auxiliary losses and distance between homography
planes.

1. Preliminaries
For a pixel in image Ii, with pixel coordinates (u, v) and

its corresponding position in the 3D space (X,Y, Z), we
can write the following equation using the pinhole camera
model: u
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Here, λ is a scaling factor that accounts for possible mis-
matches between image and real 3D space increments. The
above equation can be written as follows for the ground
plane (Z = 0):u
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We can apply the inverse of Θi to both sides of the equation
and multiply by Fi to obtain a matrix mapping from image
coordinates directly to the ground plane grid. That matrix
can be written as

Hi = Fi(Θi)−1, (5)

which is a homography matrix.
To expand this approach to planes other than the ground
plane (Z ̸= 0), we adopt SHOT’s [1] method and replace
Θi with

Θi =

θi11 θi12 θi14 + k∆zθi13
θi21 θi22 θi24 + k∆zθi23
θi31 θi32 θi34 + k∆zθi33

 (6)

where θij3 (j ∈ {1, 2, 3}) are the values omitted in Equa-
tion 3, ∆z is the distance between homographies, and k
is any non-negative integer lower than the total number of
homographies (thus denoting all possible heights for the ho-
mography). With this new Θi, we can retain the homogra-
phy matrix representation shown in Equation 5.

2. Supplementary Analysis

BoosterSHOT performance under various settings for
distance between homography planes In the main
manuscript, we visualized results for BoosterSHOT with
60cm between each homography plane. To explore whether
the distance between homography planes has any significant
impact on the performance of BoosterSHOT, we performed
additional experiments with the distance between homogra-
phy planes set to 20cm and 40cm, respectively. As shown
in Table 1, variations of BoosterSHOT showed comparable
performance. Variations with more distance between ho-
mography planes even showed a consistent 0.3 increase in
MODA while other metrics remained comparable to or bet-
ter than MVDeTr.

Spatial gate results under various settings for distance
between homography planes We further investigate the
relation between our spatial attention heatmaps and the dis-
tance between homography planes. To this end, we pro-
vide Figure 1 showing 4 spatial attention heatmaps. The
first row shows spatial attention heatmaps for a homogra-
phy plane at 40cm above the ground and the second row
shows heatmaps for a homography plane at 120cm above
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Table 1. BoosterSHOT performance based on distance between
homography planes

MODA MODP precision recall

Booster-SHOT (∆z=0.2) 94.4 92.4 99.0 95.3
Booster-SHOT (∆z=0.4) 94.4 92.4 99.0 95.3
Booster-SHOT (∆z=0.6) 94.4 92.5 98.2 96.2

Booster-SHOT 94.1 91.7 98.3 95.7

MVDeTr 93.7 91.3 99.5 94.2

Figure 1. Comparison of spatial attention maps for homography
planes of equal height

the ground. Heatmaps corresponding to the same height at-
tend to similar regions of the image, while those at different
heights show different patterns when it comes to the high-
lighted regions. This is an indication of the validity of our
claim that spatial attention is reliant on and consistent with
the height of each of the homography planes.

Effect of per-view loss on model performance To quan-
tify the effect of the per-view loss on BoosterSHOT, we
experimented with 3 different settings. Per-view loss in-
dicates any loss used only during training, such as losses
for foot position regression in each camera view. We show
the results for BoosterSHOT with no per-view losses, with
a loss term for foot position regression, and with loss terms
for both foot and head position regression in Table 2. For
the pre-existing literature, MVDet used both head and foot
loss, while SHOT and MVDeTr used only foot regression
as a subtask during training. Introducing a head position
regression subtask during the training phase shows a non-
negligible increase in performance of 0.7% in terms of
MODA when compared with our default approach using
only foot regression. Removing all per-view losses resulted
in a 0.3% MODA decrease.

Table 2. BoosterSHOT (deformable transformer) performance by
per-view loss

BoosterSHOT + Tr MODA MODP precision recall

no loss 93.8 92.0 98.3 95.4
foot (default) 94.1 91.7 98.3 95.7
head + foot 94.8 92.1 98.4 96.3

Figure 2. Comparison of image features with and without per-view
loss

In Figure 2, we compare image features extracted from
BoosterSHOT’s feature extractor with different kinds of
auxiliary loss settings. The features extracted when trained
with no additional losses are more concentrated, while those
from extractors trained with either foot regression loss or
both foot and head regression losses are shown to be more
broad. In addition, comparing the head + foot loss and foot
loss feature heatmaps shows that the foot loss induces a bias
toward the ground plane on which feet are placed, whereas
the additional head loss counters that and helps the features
attend overall to the entire body of the pedestrians. Table 2
shows that including the head regression auxiliary loss pro-
vides an additional increase in performance compared to
only using the foot regression auxiliary loss.

Figure 3. Channel selection heatmap (Camera 2 to 6 from top to
bottom)

Additional Results We include heatmaps showing which
channels were selected for each homography in each cam-
era view. Figure 6 in the main manuscript showed the se-
lection heatmap for Camera 1 in MultiviewX, while Fig-
ure 3 shows the selection heatmaps for Cameras 2 through
6. Consistent with the previous findings, the channels that
are selected for the majority of the test set for each homog-
raphy are shown to be consistent across camera views.

Computational cost, memory consumption and run-
time. We evaluate the benefits of our method in terms
of computational cost, via Giga FLoating-point OPerations
(GFLOPs), memory consumption, and runtime in seconds.
Through one-time inference, we account for floating-point



operations such as addition, multiplication, and division.1

For evaluating memory consumption, we count model pa-
rameters and buffers. For the runtime, we ran 20 randomly
generated tensors with values between 0 and 1 through the
models.

With our method, upon selecting K channels from the
image heatmaps for each homography and using D homo-
graphies, the input to the bird’s-eye-view (BEV) heatmap
generator has K × D channels. A smaller K indicates
fewer channels in the input and fewer parameters in the
BEV heatmap generator. In addition, as the spatial atten-
tion module input in our spatial gate has K channels, we
further save on computations during channel-wise pooling.

Table 3. Computational complexity comparison between methods
for 4 homographies

Method GFLOPs # of parameters runtime (sec)

SHOT 4.71k 19.0M 0.33± 0.076
SHOT + HAM (top 4) 4.09k 14.9M 0.29± 0.071

SHOT + HAM (top 16) 4.23k 16.4M 0.28± 0.074
SHOT + HAM (top 32) 4.42k 18.5M 0.22± 0.054

MVDeTr 2.59k 12.8M 0.19± 0.00032
MVDeTr + HAM 2.69k 12.9M 0.21± 0.0029

Booster-SHOT 2.54k 13.3M 0.19± 0.0015
Booster-SHOT w/ Tr 2.54k 12.9M 0.22± 0.0016

Utilizing the PTFLOPS2 package, we count the number
of FLOPs for SHOT and SHOT with HAM. Table 3 shows
results for SHOT and SHOT with HAM using 4, 16, and
32 channels per homography. We find that SHOT with 4
homographies, our baseline, takes up 4705.73 GFLOPs and
19048768 parameters. SHOT with HAM and 4 homogra-
phies using only the top-32 channels for each homography
takes up 4423.78 GFLOPs and 18530184 parameters, yield-
ing 6.16% improvement in computational cost and 2.63%
improvement in memory usage while outperforming SHOT
in all four metrics. Our best performing approach (top 16
in Table 3) takes up 4228.66 GFLOPs and 16438088 pa-
rameters, outperforming SHOT in all four metrics while
achieving a 13.7% and 10.2% reduction in computational
cost and memory usage. Our most lightweight approach
(top 4 in Table 3) takes up 4089.63 GFLOPs and 14881112
parameters, showing a 21.6% and 13.2% reduction, respec-
tively. It also outperforms SHOT in MODA, precision, and
recall with comparable MODP (-0.2%) (see Table 5). In
addition, we also tested the additional computational cost
and runtime incurred by applying our HAM to previous ap-
proaches such as MVDet, SHOT, and MVDeTr. We test the
computational cost and runtime of pre-existing methods be-
fore and after applying HAM. All experiments use an input

1As the post-processing cost is unchanged regardless of our settings,
we take into account the calculations required to go from the RGB image
input to a bird’s-eye-view heatmap

2https://github.com/sovrasov/flops-counter.pytorch

tensor of size (1, 7, 3, 720, 1280) (consistent with Wild-
track/MultiviewX).

For SHOT, because we replaced the “soft selection mod-
ule” with the lighter HAM (HAM takes fewer channels as
input, reducing the number of parameters), computational
cost decreases by 5.99%. We also found that by reducing
the number of channels (K) selected per homography, ap-
plying HAM to SHOT can reduce the computational cost by
13.2% while still improving the performance. For MVDeTr,
adding HAM (one homography) results in a 3.51% increase
in computational cost. The additional cost of increasing the
number of homographies is also minimal: SHOT + HAM
(6 homographies): 4444.46 GFLOPs SHOT + HAM (8 ho-
mographies): 4480.92 GFLOPs. The results of the runtime
evaluation overall follow the same trend as that of the com-
putational cost.

Overall, the results indicate that HAM incurs minimal
additional cost when naively applied to existing methods
and enables to tune the model to reduce computational
memory costs while boosting performance.

3. Ablation Experiments
Number of homographies As shown in SHOT [1], as us-
ing multiple homographies is essentially a quantized ver-
sion of a 3D projection, using more homographies leads to
better performance for multi-view pedestrian detection. As
our method assigns fewer channels to each homography as
the number of homographies increases, we test the perfor-
mance of SHOT with our module implemented for 2, 4, 6,
and 8 homographies. Overall, all four metrics show im-
provement as the number of homographies increases (see
Table 4). The 6 homography case has the highest MODP
and recall while the 8 homography case has the highest
precision. Both cases mentioned above have the highest
MODA. As the overall performance is very similar, we
conclude that the improvement from the increased number
of homographies has reached an equilibrium with the de-
creased number of channels passed to each homography.

Table 4. Performance depending on the number of homographies

MultiviewX
Method #H MODA MODP precision recall

SHOT 5 88.3 82.0 96.6 91.5
SHOT + HAM 2 89.4 80.8 95.2 94.2
SHOT + HAM 4 90.6 82.2 96.8 93.8
SHOT + HAM 6 91.4 83.1 97.4 93.9
SHOT + HAM 8 91.4 82.6 97.5 93.8

Number of top-K channels Our approach initially de-
termined the number of channels selected per homography



based on the number of homographies and the number of
input channels. For example, our base approach for 128 in-
put channels and 4 homographies involves selecting the top-
32 channels for each homography. We further test the per-
formance of our module when we fix the number of chan-
nels selected per homography (hereon denoted as K in ac-
cordance with the name top-K selection) and change the
number of output channels accordingly. Setting K = 64
for 4 homographies and 128 input channels indicates we
take the top-64 channels for each homography and out-
put 64 × 4 = 256 channels. Table 5 outlines the results
we get for K = 4, 8, 16, 32, 64, 128. For MODA, MODP
and precision, using the top-16 channels for each homogra-
phy outperforms the other instances with considerable mar-
gins. The top-32 instance (our base approach) improves on
the top-16 instance only for recall. We conclude that our
channel selection approach is effective in removing irrele-
vant channels and concentrating relevant information into
selected channels for each homography.

Table 5. Performance depending on the number of selected chan-
nels

MultiviewX
Method K MODA MODP precision recall

SHOT + HAM 4 90.6 81.8 97.7 92.7
SHOT + HAM 8 90.4 82.2 97.9 92.4
SHOT + HAM 16 91.8 82.6 98.9 92.9
SHOT + HAM 32 90.6 82.2 96.8 93.8
SHOT + HAM 64 90.2 82.2 96.9 93.2
SHOT + HAM 128 89.2 81.8 96.0 93.0

Attention Mechanisms In Table 6, we outline the effects
of the channel gate and the spatial gate on MVDet, as well
as their combination (HAM). It can be observed that both
the channel gate and the spatial gate individually improve
the performance over MVDet. However, using the channel
gate and spatial gate subsequently, in other words HAM,
improves in MODA and recall while retaining similar pre-
cision compared to MVDet, leading to an overall improve-
ment in performance.

Table 6. Performance of attention modules on MVDet

Wildtrack
Method MODA MODP precision recall

MVDet 88.2 75.7 94.7 93.6
MVDet + Channel Gate 88.8 76.0 95.1 93.6
MVDet + Spatial Gate 88.6 76.6 95.5 93.0

MVDet + HAM 89.4 75.7 95.2 94.1

Transferability of model trained on synthetic data to
real-world scenario Since real-world data can be sparse,
in practice a model is often trained on synthetic data and
then applied in the real world. For this reason, we com-
pared the performance of models with and without HAM
when trained on the synthetic MultiviewX data and infer-
enced on the real-world Wildtrack data. This experiment
aims to investigate if applying HAM has any effect on per-
formance in cross-dataset inference.

The results are shown in Table 7. Although there is no-
ticeable improvement when HAM is applied to MVDeTr,
we note that the application of HAM to SHOT does not
yield any improvement for cross-dataset inference. Due to
the dropping of some channels via the channel selection
module, we conjecture that the domain gap between Mul-
tiviewX and Wildtrack is the cause of the performance de-
crease for models with multiple homographies.

Table 7. Performance evaluation on Wildtrack for MultiviewX-
trained models

Method MODA MODP precision recall

MVDet 16.4 67.4 80.0 21.8
MVDet + HAM 30.9 66.3 89.5 35.0

SHOT 53.6 72.0 75.2 79.8
SHOT + HAM 51.6 68.0 78.6 70.8

BoosterSHOT 56.2 63.8 83.5 70.1

Performance under random failure of cameras In or-
der to simulate a production environment, we test the per-
formance of the model when cameras can fail sponta-
neously. We take a pre-trained instance of BoosterSHOT
that is trained with all cameras and run inference on the test
set of Wildtrack. During inference, we add a pre-processing
step for each frame to simulate camera failure in production.
First, for each frame a random number of cameras are se-
lected to be “turned off”. The number of the “turned off”
cameras is between 1 and the maximum number of avail-
able cameras (7 for Wildtrack). Then a failure rate decides
if the selected cameras are failing or not. For example, for a
failure rate of 0.6, anywhere between one to seven cameras
fail for 60% of all frames. For failing cameras, the input im-
ages are blacked out to emulate an empty frame. We keep
the decision threshold for bird’s-eye-view pedestrian detec-
tions the same because it might not be possible to adjust
for camera failure in real-time. The results are shown in
Table 8 and the effect of camera failure is relatively small.
Even if at least one camera fails for all frames (failure rate
of 1), the performance decrease is 1.2% MODA and 2.1%
recall. We would normally expect camera failure to be fairly
rare in production so we ran an additional experiment with
a failure rate of 2%. This results in a negligible change in



performance, which indicates that the method will perform
consistently in a production setting. Please note that an aug-
mentation strategy of incorporating random failing cameras
into the training process is likely to increase the robustness
to failing cameras. We leave such an investigation open for
future work.

Table 8. Performance of BoosterSHOT on Wildtrack for random
camera failure

Failure rate MODA MODP precision recall

0 91.5 82.2 96.8 94.6
0.02 91.5 82.1 97.0 94.4
0.2 90.5 82.1 96.8 93.6
0.4 90.1 82.1 96.7 93.3
0.6 89. 81.9 97.3 91.8
0.8 89.8 81.9 97.2 92.4
1 89.3 82.3 97.9 91.3

Wildtrack attention maps We show the Wildtrack atten-
tion maps for the channel selection and spatial gate modules
in Figure 4. The attention maps from the channel selec-
tion module (top) resemble those from MultiviewX shown
in Figure 4 in the main paper. The attention maps from the
spatial selection module show different distributions from
one another, which is in agreement with our claim in the
main paper that different pixels in the feature map can dif-
fer in importance for each homography.
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Figure 4. Homography-wise output from channel selection (top)
and spatial attention maps (bottom)


