
Supplementary:

ReConPatch : Contrastive Patch Representation Learning for Industrial

Anomaly Detection

A. Implementation details

ReConPatch was implemented with Python 3.7 [37] and PyTorch 1.9 [27]. Experiments are run on Nvidia GeForce GTX
3090 GPU. We used ImageNet-pretrained models from torchvision [23] and the PyTorch Image Models repository [38].
By default, following [7] and [9], ReConPatch uses WideResNet50-backbone and WideResNet101-backbone [42] for direct
comparability. Patch-level features are taken from feature map aggregation of the final outputs in f layer of ReConPatch. We
use faiss [16] to compute all nearest neighbor retrieval and distance computations same as PatchCore [29].

B. Additional experiments on MVTec AD

This section contains the details of setting up hyper-parameters and experiments with the projection layer of ReConPatch
on MVTec AD [4] dataset. We experimented to find the optimal hyper-parameters with the following values: k value of k-
nearest neighborhood for calculating contextual similarity, the repelling margin m in RC loss, and applying ratio ↵ between
pairwise and contextual similarity. Additionally, to verify the effectiveness of projection layer g, we tested our proposed
method without projection layer g.

All experiments have the same conditions. Each images are resized to 256⇥256 and center-cropped to 224⇥224 and
ImageNet-pretrained WideResNet50-backbone [42] from torchvision [23] was employed as the feature extractor. The
f layer output size was set to 512, and the coreset subsampling percentage was set to 1%. The ReConPatch was trained for
120 epochs per each class on MVTec AD [4] with AdamP [14] optimizer with cosine annealing [22] scheduler.

B.1. The k value of k-nearest neighbor for contextual similarity

We tested several k - nearest neighborhood value k for finding the best performance of anomaly detection on MVTec
AD [4] dataset. In Eq. 2, smaller k values will use features that are closer together to determine contextual similarity, while
larger k values will use features that are further apart in the embedding space to determine contextual similarity. To find an
optimal k value, we fixed other hyper-parameters m = 1, ↵ = 0.5. Table S1 shows the results of experiments.

ReConPatch (WRS-50, 224⇥224, ↵ = 0.5, m = 1.0)
k value 3 5 7 10 15 20

Detection 99.5 99.56 99.55 99.54 99.5 99.49
Segmentation 98.09 98.07 98.07 98.07 98.04 98.07

Table S1. Results of anomaly detection(image-level AUROC) and segmentation(pixel-level AUROC) with various k-nearest neighborhood
on MVTec AD dataset. (↵ = 0.5, m = 1.0).

B.2. The repelling margin m of relaxed contrastive loss

We tested margin value m in Eq. 7 repelling term of relaxed contrastive loss with various m values to obtain the perfor-
mance of anomaly detection on MVTec AD [4]. All other hyper-parameters are fixed(k = 5, ↵ = 0.5). Table S2 is the results
of experiments. Changing the margin m has no effect on performance of anomaly detection(image-level AUROC) but it does
slightly affect on segmentation(pixel-level AUROC). So we use the repelling margin m to 1.0.

ReConPatch (WRS-50, 224⇥224, k = 5, ↵ = 0.5)
m value 0.5 1 1.5 2

Detection 99.55 99.56 99.55 99.5
Segmentation 98.04 98.07 98.05 98.04

Table S2. Results of anomaly detection(image-level AUROC) and segmentation(pixel-level AUROC) with various repelling margin m
values of RC loss. (k = 5, ↵ = 0.5).



B.3. The applying ratio ↵ between pairwise and contextual similarity

We tested ↵ in Eq. 6 which the ratio of linear combination between pairwise and contextual similarity within range [0, 1].
If ↵ is 0 then only use contextual similarity, and if ↵ set to 1.0 then use pairwise similarity only. Table S3 shows the best
detection(image-level AUROC) performance when using pairwise and contextual similarity with same ratio.

ReConPatch (WRS-50, 224⇥224, k = 5, m = 1.0)
↵ 0.0 0.25 0.5 0.75 1.0

Detection 99.51 99.51 99.56 99.52 99.5
Segmentation 98.02 98.07 98.07 98.1 98.12

Table S3. Results of anomaly detection(image-level AUROC) and segmentation(pixel-level AUROC) with various ↵ values within range
[0, 1] of ReConPatch. (k = 5, m = 1.0).

B.4. The projection layer g

We tested with linear projection layer g, without projection layer g. Fig. S1 describes the visualization of patch features
obtained by ReConPatch which trained with projection layer g and trained without projection layer. For effective visualization
of high dimensional feature vectors, we map the patch features into 2-dimensional space using UMAP [24]. With visualiza-
tion result, we verify that the projection layer g of ReConPatch encourages the features with similar position together. We
can also verify that using the projection layer has better anomaly detection performance than not using the projection layer
by the results in Table S4.

ReConPatch (WRS-50, 224⇥224, k = 5, m = 1.0, ↵ = 1.0)
Projection layer w/o Proj. Layer w/ Proj. Layer
Detection 99.42 99.56

Table S4. Results of Detection AUROC with and without projection layer g on the MVTec AD dataset [4] using our proposed ReConPatch
model with a WideResNet-50 backbone [42], 224⇥224 input size, 512 dimensional f layer, k = 5, m = 1.0, ↵ = 1.0 and 1% coreset
sampling.

Figure S1. An illustrative comparison of features mapped by ReConPatch with projection layer (a) and without projection layer (b) using
the MVTec AD dataset [4]. The scatter plot describes the feature space of each method, colored according to the pixel position.



Method PatchCore ReConPatch
# Class\Aug. Method ! w/o Aug. w/ Aug. Diff w/o Aug. w/ Aug. Diff
Bottle 100 99.68 0.32 100 100 0
Cable 99.5 96.59 2.91 99.83 99.01 0.82
Capsule 98.1 82.73 15.37 98.8 95.29 3.51
Hazelnut 100 100 0 100 100 0
Metal nut 100 98.92 1.08 100 99.9 0.1
Pill 96.6 92.09 4.51 97.49 94.73 2.76
Screw 98.1 89.75 8.35 98.52 89.96 8.56
Toothbrush 100 95 5 100 99.17 0.83
Transistor 100 98.37 1.63 100 99.33 0.67
Zipper 99.4 95.51 3.89 99.76 99.13 0.63

Object classes 99.17 94.86 4.31 99.44 97.65 1.79
Carpet 98.7 96.47 2.23 99.6 99.04 0.56
Grid 98.2 87.89 10.31 100 98.5 1.5
Leather 100 100 0 100 100 0
Tile 98.7 96.64 2.06 99.78 100 -0.22
Wood 99.2 99.47 -0.27 99.65 99.82 -0.17

Texture classes 98.96 96.09 2.87 99.81 99.47 0.34
Average 99.1 95.48 3.62 99.56 98.56 1.0

Table S5. Anomaly detection performance with data augmentation(random rotate, translate, brightness, contrast and gaussian blur) on the
MVTec AD dataset [4]

C. Performance of ReConPatch

C.1. Applying data augmenatation

In the industrial domain, product images are collected in a well-controlled environment, but uncontrollable change in the
environmental conditions at the time of acquisition can cause variation in the image data. This can lead to variation between
normal image data, which can adversely affect the performance of industrial anomaly detection. To verify that ReConPatch
is adaptable to environmental changes, we applied various data augmentation method to evaluate its anomaly detection
performance. We randomly applied rotation(±5degree), translation(±1%), color jitter(brightness and contrast ±30%), and
gaussian blur(� = [0.1, 1.0]) which could occur in the real world. Table S5 shows the detail performance comparison of
PatchCore [29] and ReConPatch with data augmentation on MVTec AD dataset [4].

C.2. Inference time

We measured inference time and memory usage of ReConPatch and PatchCore [29] with Intel Xeon Gold 6240 CPU
and Nvidia GeForce GTX 3090 GPU. Test images are resized to 256⇥256 and center cropped to 224⇥224 on MVTec AD
dataset [4]. The target embed dimension was set to 512 in both PatchCore [29] and ReConPatch. We experimented for 30
iterations with 10 warm-up times to measure the inference time of PatchCore [29] and our proposed ReConPatch. In Table
S6, the average inference time of PatchCore [29] and ReConPatch are not significantly different.

Method Avg. inference time(msec)
PatchCore 37.89
ReConPatch 38.09

Table S6. Inference time comparison between PatchCore [29] and ReConPatch on MVTec AD dataset.

C.3. Memory efficiency

Our proposed ReConPatch algorithm uses a single linear layer which trained with local patch features of normal samples.
In Eq. S1, memory usage of memory bank Mcoreset is affected by dimension of f layer fdim and percentage of coreset
subsampling cpercentage. Hfeature and Wfeatures are size of outputs in blocks 2 and 3. The results of anomaly detection and



segmentation with various f layer dimension shows in Table 2 and Fig. S2. In Fig. S2, the performance of ReConPatch for
anomaly detection (image-level AUROC) and segmentation (pixel-level AUROC) is better than PatchCore [29] with same
memory bank size.

Mcoreset = fdim ⇤Hfeatures ⇤Wfeatures ⇤Ntrain ⇤ cpercentage (S1)

Figure S2. The results of Detection AUROC and Segmentation AUROC for the f layer dimension on the MVTec AD dataset [4]. Image
size is 224⇥224, k = 5, m = 1.0, ↵ = 1.0 and coreset subsampling rate is 1%

C.4. Anomaly score maps

We provide the examples of the anomaly score map of MVTec AD dataset [4] and BTAD [25] dataset along with ground
truth (orange line) overlaid input images in Fig.S3, S4. The anomaly map indicates the regions of the input image where
ReConPatch has detected anomalies, with higher values indicating a higher likelihood of an anomaly being present. The
green line indicates the threshold which is optimized by the F1 scores of anomaly segmentation, and the orange line indicates
the ground truth of the anomalies.



Figure S3. Examples of images with anomalies (top) and measured anomaly score maps (bottom) on MVTec AD dataset [4]. The orange
line depicts the ground truth of the anomalies and the green line depicts thresholds optimizing F1 scores of anomaly segmentation. The
green star indicates the maximal location of the anomaly score in the heatmap.



Figure S4. Examples of images with anomalies (top) and measured anomaly score maps (bottom) on BTAD dataset [25]. The orange line
depicts the ground truth of the anomalies and the green line depicts thresholds optimizing F1 scores of anomaly segmentation. The green
star indicates the maximal location of the anomaly score in the heatmap.


