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Experimental Setup

In our experiments, given K resource categories, we simu-
late the resource capacity of each category by enforcing an
even spacing principle if possible such that lk = l0 + k∆L
for k ∈ {1, 2, . . .K − 1}, where l0 is the location of the
first exit, ∆L = ⌊N−l0

K−1 ⌋ and lK = N is the last exit, i.e. the
full model. We perform experiments with ResNet56 [11] on
CIFAR-10 and with DenseNet121 [14] on CIFAR-100. We
use the default ResNet settings for 56-layer architecture and
insert two evenly spaced early exits at the 18th and 36th lay-
ers (K=3). For DenseNet, we follow the default settings for
121-layer configuration and insert three early exit layers at
the 12th, 36th and 84th layers due to transition layers (K=4).
We train these models using Adam optimizer [15] for 150
epochs (first 20 epochs without early exits) and a batch size
of 128, with the initial learning rate of 0.1 (decays by 0.1 at
50th and 100th epochs). On the ImageNet dataset, we use
MSDNet [13] with 35 layers, 4 scales and 32 initial hidden
dimensions. We insert four evenly spaced early exits at the
7th, 14th, 21th and 28th layers (K=5). Each early exit clas-
sifier consists of three 3x3 convolutional layers with ReLU
activations. We set αKL = 0.01 and activate it after com-
pleting 75% of the training. For HRNet, we inject exits
after the 2nd and 3rd stages with structures as in [21]. For
BERT, we insert three evenly spaced early exits at the 3rd,
6th and 9th layers (K=4). Each early exit classifier consists
of a fully-connected layer. We finetune the models for 20
epochs using gradient descent with a learning rate of 3e-5
and batch size of 16.

For our approach, based on validation performance, we
set Dh = 0.5D and Dh = 2D for image/text classifica-
tion experiments respectively. For image segmentation, we
first downsample predictions by four with bilinear sampling
and then operate on the mean of pixel-level computations.
We optimize the weights using Adam optimizer with the
learning rate of 3e-5 on validation data and set αcost = 10.
We observe that our algorithm satisfies the budget constraint
with this setting and it is also robust with respect to selec-
tions within the range of αcost ∈ [1, 100]. In all experi-
ments, we stop the optimization if the loss does not decrease
for 50 consecutive epochs on the validation set. Inference
measurements for CIFAR experiments are carried out on a
machine with an 8-core 2.9GHz CPU, other experiments on
a machine with RTX3060 GPU, and repeated ten times. The
extra inference time caused by the exit score computations
is also included in the reported latency measurements, and
the cost is much smaller compared to the cost of the forward
pass of the model as shown in Table 3.

Effect of Self-Distillation

We use the same model trained with self-distillation while
comparing our scheduling policy with other early exit
methodologies in all reported results. To analyze the
improvements obtained with self-distillation, we also re-
port the results on CIFAR datasets without applying self-
distillation during training in Table 4. Compared to the re-
sults provided in Table 1, we observe up to 1% accuracy de-
crease in EENet and BranchyNet, and up to 1.6% accuracy
decrease in MSDNet when self-distillation during training
is disabled.

Dataset Budget BranchyNet MSDNet EENet
3.50 ms 93.55 93.60 93.69
3.00 ms 92.11 92.39 92.58CIFAR-10
2.50 ms 86.98 88.10 88.51
7.50 ms 73.90 73.88 74.05
6.75 ms 70.99 70.96 71.54CIFAR-100
6.00 ms 67.09 67.15 68.56

Table 4. Accuracy (%) values under various budget settings on
CIFAR datasets without self-distillation during multi-exit model
training.

Ablation Study of Design Components

We also analyze the effect of different components in EENet
on performance by in-depth investigation of the results for
SST-2. Figure 6 provides the plot of average inference
time vs. accuracy for two additional variants of EENet and
compares with MSDNet and BranchyNet. The first vari-
ant of our approach shows the results of our system with-
out optimizing the exit scoring, and instead, directly us-
ing maximum prediction scores. The second variant shows

Figure 6. Average latency (ms) vs Accuracy (%) results at SST-2
for BranchyNet, MSDNet, and EENet variations (without distri-
bution/scoring optimization).



Figure 7. Visual comparison of randomly selected image segmentation examples from Cityscapes dataset for 50 ms/sample budget. Empty
images indicate that the sample has exited previously as a result of having a higher exit score than the computed exit threshold.

the results of EENet without optimizing exit distributions
through our budget-constrained learning, and instead, di-
rectly using geometric distribution. We observe that opti-
mization of both exit scoring functions and distributions to
obtain thresholds contributes to the superior performance of
EENet.

Visual Analysis of Early Exit Behavior

We analyze the early exiting behavior of EENet on different
tasks by qualitatively investigating the samples. On image
segmentation, we observe that frames with less objects tend
to exit earlier as shown in Figure 7. We also illustrate test
samples exited at each exit for four different classes from
CIFAR-100 data in Figure 8. It is visually clear that the
easier samples exit earlier to utilize the provided more effi-
ciently. We observe that EENet utilizes the second exit in
this particular scenario very efficiently by assigning easy
samples and obtaining higher accuracy with significantly
lower average latency. We conduct a similar analysis for
the experiment set on AgNews test data in Figure 9. Simi-
larly, EENet utilizes the second exit efficiently by assigning
easy samples and obtaining higher accuracy with signifi-
cantly lower latency.

Adapting to Dynamic Budget Settings

In practice, the test dataset may contain significantly eas-
ier/harder or out-of-distribution samples. Data distribution
can also change over time. However, none of the exist-
ing adaptive inference algorithms strictly meets the latency
budget over test data since the optimization is performed
over the training or validation dataset. We also optimize

Dataset Budget Method Latency Accuracy (%)
BranchyNet 2.87 ms 92.57
EENet 2.85 ms 92.90CIFAR-10 3.00 ms
EENet w/ online switch 2.98 ms 92.92
BranchyNet 6.55 ms 71.65
EENet 6.61 ms 72.12CIFAR-100 6.75 ms
EENet w/ online switch 6.74 ms 72.11

Table 5. Test accuracy values on CIFAR datasets and the realized
latency/sample values during the test for BranchyNet, EENet, and
EENet with online switching during inference.

the scheduling policy over the validation dataset however,
our solution provides lightweight easy-to-optimize sched-
ulers without requiring any changes on the full model it-
self. Therefore, a simple yet effective approach of switch-
ing between a few schedulers (optimized for different bud-
get values) in an online manner is possible in our frame-
work and can be utilized if necessary. For instance, we
consider the scenario for CIFAR experiments, where dur-
ing the test, we can switch between schedulers trained for
three different budget values as provided in Table 1. For the
3.0 ms/sample budget setting on CIFAR-10, if the test sam-
ples are easier/harder than expected and the realized latency
per sample is getting lower/higher than the provided budget,
we can switch to the scheduler optimized for the budget of
3.50/2.50 ms per sample. To this end, we compute the re-
maining budget per sample after each inference operation
and switch to the scheduler trained under the closest budget
setting. We provide the results in Table 5.
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Figure 8. Samples from CIFAR-100 test set for forest/mountain/sunflower/train classes. Each subfigure illustrates the samples at the
corresponding exit of DenseNet121 with four exits under the average inference budget of 6.25 milliseconds/sample. Blue borders indicate
correct predictions. Orange borders indicate incorrectly predicted samples and if it were exiting at the last exit, it would be correctly
predicted. No borders indicate the samples incorrectly predicted by EENet at that exit and also the last exit. The values on the titles
indicate the number of samples from these categories (correctly predicted / incorrectly predicted at that exit / also incorrectly predicted at
the last exit).



Figure 9. Visual comparison of the early exit approaches on AgNews test data with BERT (4 exits) for the average latency budget of 100
milliseconds. We illustrate the randomly selected twelve samples from four classes and the exit location that they were assigned. Images
with green/red borders are predicted correctly/incorrectly at the corresponding exit. We also report the number of correct predictions and
exited samples at each exit. Our approach does not make costly assignments to the last two exits and uses the second exit more effectively.


