
Loc. Quality

BBox Reg. !*+,

!-
RPN

Proposals

Backbone
!!*+,

Classification

Loc. Quality

BBox Reg.

(1 − %$%&) ∗ !%'(

%$%& ∗ !$)
RPN

!!%-

Classification

Loc. Quality

BBox Reg.

(1 − %$%&) ∗ !%'(

%$%& ∗ !$)
RoI Head

Proposals

Backbone

Loc. Quality

BBox Reg. !-

!-
RoI Head

Classification

BBox Reg. !-

!$)

RPN

Proposals

Backbone

Classification

BBox Reg. !-

!$)

RoI Head

THPNOLNFaster R-CNN

Figure 5. Differences between Faster R-CNN, OLN, and our hybrid THPN architecture.

Appendix
A. Overview of baseline methods

There are currently three types of object proposals methods: (1) learning-free approaches, (2) classification-based learning
approaches, and (3) pure localization-based learning approaches. In this section, we outline the methodology for each and
discuss their respective drawbacks. See Fig. 5 for a visual representation of the architectural differences between our approach
and existing proposal networks.

Learning-free approaches. Early approaches for generating object proposals rely on hand-crafted features such as contrast
and edges. Krähenbühl and Koltun [34] identify critical level sets in geodesic distance transforms computed over carefully
placed seeds to generate proposals. Uijlings et al. [60] propose Selective Search, an algorithm that performs a graph-based
segmentation and greedily merges superpixels based on color, texture, size, and shape similarity. Edge Boxes [75] is a box
proposal algorithm that works by efficiently computing and finding enclosed edge contours in an image. Finally, Multiscale
Combinatorial Grouping (MCG) [50] performs multi-scale segmentation and groups regions by efficiently exploring their
combinatorial space. These methods were once the backbone of many early object detection systems such as Fast R-CNN
[16], but have since been outclassed by learning-based approaches in terms of efficiency and recall performance.

Classification-based learning approaches. The seminal learning-based proposal solution is the Region Proposal Network
(RPN) [51]. For a predefined set of anchor boxes, RPN learns to predict box coordinate regression deltas as well as an “ob-
jectness” score which indicates the likelihood that the box contains a foreground object of interest as opposed to background
or an object from a class outside of the training distribution. While the single-stage RPN serves as an efficient benchmark
solution for many state-of-the-art detection systems [6, 21, 51], we primarily focus on two-stage approaches in this work as
they have been shown to have significantly better generalization abilities [29, 32, 64]. Thus, we consider a class-agnostic
Faster R-CNN model as a stronger baseline, in which all annotations are treated as instances of the same class. The loss
function for both stages of a class agnostic Faster R-CNN model (i.e., RPN and RoI Head) for an image is defined as:

LRPN

�
{ci}, {ti}

�
=

1

Ncls

X

i

LBCE(ci, c
⇤
i ) + �

1

Nreg

X

i

c
⇤
iL1(ti, t

⇤
i ). (4)

Here, i is the anchor index, ci is the predicted probability of anchor i containing an object, and ti are the predicted box
regression deltas for anchor i. The ground truth labels for objectness and box regression are shown as c⇤i and t

⇤
i , respectively.

The box regression head is trained with an L1 loss. The objectness head of RPN is trained with a binary cross-entropy loss
LBCE , and a sampler is used to ensure 50% of boxes sampled during training are positive matches to some ground truth
object.

Kim et al. [32] point out that framing object proposal as a discriminative task hinders generalization as it involves indis-
criminate sampling of negative regions when training the objectness head(s). In other words, because we only have access
to labels from a subset of object classes that exist in the world, the model overfits to the labeled object classes and treats all
unlabeled objects as background.

Pure localization-based learning approach. Object Localization Network (OLN) [32] provides an alternative to
classification-based approaches in an effort to resolve the aforementioned overfitting issue. OLN uses the same architecture



as Faster R-CNN, but it replaces the classification heads with localization quality prediction heads. OLN uses centerness [59]
and IoU score [28] as substitutes for objectness in the OLN-RPN and OLN-Box stages, respectively. Thus, OLN is a pure
localization-based proposal network trained with the following loss function:

LOLN

�
{qj}, {ti}

�
=

1

Nlq

X

j

L1(qj , q
⇤
j ) + �

1

Nreg

X

i

L1(ti, t
⇤
i ). (5)

Here, qj and q
⇤
j are the predicted and target localization quality scores, respectively. Note that we use a separate index j

because the set of sampled anchors for the LQ head can be different than the set of sampled anchors for the BOX head.
Because we are not training a discriminative classification task, we only need to sample positively matched anchors to train
the LQ head. Intuitively, if a model can accurately predict its overlap qj 2 [0, 1] with a ground truth object, we can effectively
treat qj as a notion of objectness. This re-framing of the sparse classification problem allows the model to be less biased
towards the specific classes that it is trained on.

While OLN resolves the explicit bias resulting from learning to classify all unlabeled regions as background, we posit that
it still suffers from implicit bias because it still only learns from ID instances. Adding to the bias problem is the fact that
there exists a natural class imbalance issue in natural data. While OLN’s generalization benefits over Faster R-CNN is shown
to be significant when it is trained on a diverse and representative class set such as PASCAL VOC [12], we hypothesize that
it will struggle when faced with more challenging tasks with fewer ID classes and fewer labeled instances.

B. Learning-free baseline comparison

ALL
Method AR10 AR100

Geodesic [34] 4.0 18.0
Sel. Search [60] 5.2 16.3
EdgeBoxes [75] 7.4 17.8
MCG [50] 10.1 24.6
THPN (�CLS = 0.50) 41.0 59.9

Table 6. ALL recall comparison with learning-free baselines on the COCO dataset. The THPN (trained on all COCO classes) significantly
outperforms these approaches. Results for baselines are borrowed from [49].

While learning-free approaches to object proposal have been largely supplanted by deep learning-based methods, we feel
that they are still worth worth comparing against. For this test, we compare recall on all classes in the COCO validation set.
For this experiment, we use a THPN with �CLS = 0.50 to promote the optimal ID recall. Tab. 6 shows that THPN outclasses
all learning-free baselines by a significant margin.

C. Closed-set performance
THPN’s design is primarily suited for handling open-set tasks that assume the presence of OOD objects of interest.

However, we notice that a THPN with a larger �CLS is capable of superior ID performance to pure classification-based
models like Faster R-CNN. For completeness, we test our model’s performance in closed-set tasks. The results of this
test are in Tab. 7. We train each model on all classes of COCO or ShipRSImageNet (except docks) and test on the complete
validation sets. Note that we do not use self-training or crop & zoom augmentations here to test the impact of the architectural
differences only. On the large-scale COCO dataset, Faster R-CNN outperforms OLN. However, THPN with �CLS � 0.10
beats both baselines. Setting �CLS = 0.50 is the best in this case, beating Faster R-CNN by +2.4 AUC. On the smaller ships
data, OLN is superior to Faster R-CNN, and THPN with �CLS  0.25 outperforms OLN by +0.8 AUC.

D. Data augmentation and training schedule
Tab. 8 shows the effect of various data augmentations and training schedules on an OLN model trained on the VOC split.

In this work, we borrow transform implementations from mmdetection [7]. We find that the crop & zoom augmentation is the
most effective for improving OOD generalization of an OLN-style of proposal network. However, all augmentations come at
a slight cost of ID recall. We also find that using a 2x training schedule (16 epochs) is beneficial only if using the additional
strong augmentations.



Test ALL
Dataset Model Images Instances AUC AR10 AR100 AR1000

COCO

Faster R-CNN 117k 860k 42.9 38.1 57.1 63.1
OLN 117k 860k 39.6 29.8 54.8 64.4
THPN (�CLS = 0) 117k 860k 39.6 29.8 54.8 64.4
THPN (�CLS = 0.10) 117k 860k 43.1 37.4 57.5 65.0
THPN (�CLS = 0.25) 117k 860k 44.7 40.4 59.1 65.6
THPN (�CLS = 0.50) 117k 860k 45.3 41.0 59.9 66.2
THPN (�CLS = 0.75) 117k 860k 45.1 40.6 59.7 66.2
THPN (�CLS = 0.90) 117k 860k 44.8 40.1 59.3 66.2
THPN (�CLS = 1) 117k 860k 44.7 39.9 59.2 66.0

Ships

Faster R-CNN 2.2k 10k 50.2 51.5 63.1 68.4
OLN 2.2k 10k 51.4 51.5 65.7 70.3
THPN (�CLS = 0) 2.2k 10k 51.6 51.7 66.0 70.3
THPN (�CLS = 0.10) 2.2k 10k 51.6 52.7 65.6 69.6
THPN (�CLS = 0.25) 2.2k 10k 51.8 53.1 65.8 69.7
THPN (�CLS = 0.50) 2.2k 10k 51.1 52.6 64.6 68.9
THPN (�CLS = 0.75) 2.2k 10k 51.4 52.8 65.2 69.4
THPN (�CLS = 0.90) 2.2k 10k 50.9 52.4 64.3 69.3
THPN (�CLS = 1) 2.2k 10k 51.0 52.3 64.9 68.8

Table 7. Results on closed-set tasks. Here, we assume all instances of all classes of interest are labeled.

Augmentation Epochs OOD-AUC ID-AUC ALL-AUC

None 8 24.8 44.8 35.5
Crop & Zoom 8 25.5 43.0 34.8
Discrete Rotate 8 24.8 40.3 33.0
Random Affine 8 23.5 42.3 33.6
Photometric Distortion 8 25.0 44.4 35.4
Crop & Zoom + Photometric Distortion 8 25.5 42.0 34.2
None 16 24.8 44.8 35.5
Crop & Zoom 16 26.1 44.2 35.8
Discrete Rotate 16 25.4 41.8 34.0
Random Affine 16 24.0 43.7 34.5
Crop & Zoom + Photometric Distortion 16 26.0 43.7 35.4

Table 8. Effect of augmentation and training schedule on an OLN model trained on the VOC split.

Images / OOD ID ALL
Split Model Instances AUC AR10 AR100 AR1k AUC AR10 AR100 AR1k AUC AR10 AR100 AR1k

Military

Faster R-CNN 1.5k / 4.7k 11.8 11.8 12.2 24.3 65.6 75.6 79.4 81.3 33.3 37.1 39.1 47.1
OLN 1.5k / 4.7k 23.0 23.4 28.1 35.8 69.0 79.2 84.4 85.4 41.3 45.2 50.6 55.6
THPN (�CLS = 0) 1.5k / 6.1k 29.0 28.4 37.1 40.7 68.8 78.3 84.2 85.1 44.7 47.7 56.0 58.5
THPN (�CLS = 0.10) 1.5k / 6.1k 26.6 27.0 33.6 37.8 69.3 79.4 84.7 85.4 43.6 47.5 54.1 56.9
THPN (�CLS = 0.25) 1.5k / 6.1k 22.4 23.1 27.3 33.8 69.0 79.3 84.1 84.9 40.9 45.2 50.0 54.3
THPN (�CLS = 0.50) 1.5k / 6.1k 16.1 16.8 19.2 25.8 68.3 78.7 83.1 84.4 36.9 41.3 44.7 49.2

Civilian

Faster R-CNN 1.0k / 4.4k 16.0 16.8 17.8 29.1 33.4 29.5 44.3 51.2 24.6 22.6 31.0 40.1
OLN 1.0k / 4.4k 38.7 38.4 49.2 56.6 35.6 30.7 47.9 54.3 36.9 33.8 48.5 55.5
THPN (�CLS = 0) 1.0k / 5.7k 49.8 50.4 63.5 68.3 36.5 30.3 49.1 56.7 42.8 39.3 56.2 62.5
THPN (�CLS = 0.10) 1.0k / 5.7k 46.3 47.2 58.4 64.2 36.4 31.4 48.5 55.0 41.0 38.2 53.4 59.6
THPN (�CLS = 0.25) 1.0k / 5.7k 33.9 34.4 41.6 52.5 35.8 31.5 47.6 54.0 34.6 32.0 44.5 53.3
THPN (�CLS = 0.50) 1.0k / 5.7k 24.1 22.8 28.7 42.8 35.5 31.1 46.9 54.1 29.5 26.2 37.7 48.5

Table 9. Full results on the ships challenge.

E. Full ship detection results

For the purposes of space efficiency, we show a summary of the results from the ships challenge in Sec. 5.4 of the main
text. In this section, we provide the full results of this experiment in Tab. 9. In both splits, THPN with �CLS = 0 is vastly



Images / OOD ID ALL
Split Model Instances AUC AR10 AR100 AR1k AUC AR10 AR100 AR1k AUC AR10 AR100 AR1k

COCO40

Faster R-CNN 104k / 623k 26.6 17.5 36.0 51.4 44.4 41.4 58.3 63.2 39.0 33.8 51.7 60.0
OLN 104k / 623k 33.1 25.8 44.8 54.6 42.1 34.6 57.2 65.0 38.9 30.5 53.3 62.2
THPN (�CLS = 0) 104k / 810k 34.1 28.0 45.6 55.2 41.6 34.6 56.2 64.0 38.9 31.1 52.8 61.6
THPN (�CLS = 0.10) 104k / 810k 34.8 29.8 46.0 55.3 44.0 39.6 58.1 64.6 40.7 35.1 54.3 62.0
THPN (�CLS = 0.25) 104k / 810k 34.5 29.2 45.6 55.4 45.0 41.5 59.0 65.0 41.5 36.5 54.9 62.4
THPN (�CLS = 0.50) 104k / 810k 33.6 28.0 44.5 55.3 45.1 41.7 60.7 64.7 34.4 29.9 44.8 55.1

VOC

Faster R-CNN 95k / 493k 19.3 11.6 25.1 42.4 46.7 45.1 60.7 64.7 34.4 29.9 44.8 55.1
OLN 95k / 493k 24.8 18.4 33.2 45.0 44.8 40.1 59.3 66.1 35.5 29.1 47.5 56.9
THPN (�CLS = 0) 95k / 641k 27.7 21.3 36.9 48.0 44.8 39.9 59.5 66.0 36.7 30.1 49.3 58.3
THPN (�CLS = 0.10) 95k / 641k 27.9 22.0 37.1 48.0 46.8 44.2 60.9 66.5 38.0 32.9 50.2 58.5
THPN (�CLS = 0.25) 95k / 641k 27.5 21.4 36.6 48.0 47.6 45.8 61.8 66.8 38.4 33.7 50.5 58.8
THPN (�CLS = 0.50) 95k / 641k 26.4 19.8 35.0 47.8 47.8 46.1 62.1 67.1 38.0 33.5 50.0 58.9

VOC5

Faster R-CNN 74k / 357k 16.3 9.8 20.7 38.1 48.1 47.6 62.2 65.6 29.1 24.8 37.4 49.6
OLN 74k / 357k 20.3 14.1 26.9 40.1 47.6 45.2 61.7 67.8 31.0 25.7 40.8 51.6
THPN (�CLS = 0) 74k / 465k 23.5 17.1 31.3 43.9 46.8 43.9 61.1 67.0 32.6 26.7 43.2 53.7
THPN (�CLS = 0.10) 74k / 465k 23.7 17.6 31.5 43.9 48.3 47.1 62.4 67.4 33.3 28.4 43.8 53.7
THPN (�CLS = 0.25) 74k / 465k 23.6 17.4 31.1 43.9 49.0 48.4 63.1 67.7 33.5 28.9 43.9 53.8
THPN (�CLS = 0.50) 74k / 465k 22.7 16.1 30.0 43.9 49.3 48.7 63.5 67.8 33.2 28.5 43.4 53.8

Animal

Faster R-CNN 24k / 63k 11.5 6.0 13.5 31.3 53.9 58.9 67.1 69.4 14.6 9.8 17.5 34.1
OLN 24k / 63k 13.3 8.2 16.4 31.5 55.8 59.7 69.7 73.2 16.4 11.9 20.3 34.6
THPN (�CLS = 0) 24k / 81k 16.9 9.9 22.9 36.7 55.5 59.0 69.7 73.0 19.7 13.4 26.3 39.3
THPN (�CLS = 0.10) 24k / 81k 17.0 10.4 22.9 36.6 56.1 60.6 69.9 73.0 19.8 13.9 26.3 39.3
THPN (�CLS = 0.25) 24k / 81k 17.0 10.3 22.8 36.6 56.6 61.5 70.5 73.2 19.8 14.0 26.3 39.3
THPN (�CLS = 0.50) 24k / 81k 15.9 9.3 20.7 36.6 56.8 61.9 70.8 73.3 18.9 13.1 24.4 39.3

Table 10. Results on the training class diversity challenge when using a THPN trained with �CLS = 0.10. The listed �CLS in the table is
the value used during inference-time.

Images / OOD ID ALL
Split Model Instances AUC AR10 AR100 AR1k AUC AR10 AR100 AR1k AUC AR10 AR100 AR1k

VOC (50%)

Faster R-CNN 75k / 246k 18.7 11.7 24.1 40.9 44.8 42.7 58.5 63.1 33.1 28.5 43.2 53.6
OLN 75k / 246k 23.8 17.7 31.7 43.8 44.4 39.5 58.8 65.7 34.9 28.5 46.7 56.3
THPN (�CLS = 0) 75k / 320k 25.7 19.4 34.2 45.9 44.7 40.9 58.6 65.4 35.9 30.1 47.6 57.1
THPN (�CLS = 0.10) 75k / 320k 25.7 19.6 34.0 45.9 46.1 44.1 59.7 65.7 36.7 32.0 48.1 57.2
THPN (�CLS = 0.25) 75k / 320k 25.1 18.5 33.3 45.8 46.8 45.3 60.5 66.0 36.9 32.4 48.3 57.4
THPN (�CLS = 0.50) 75k / 320k 23.7 16.3 31.4 45.7 46.8 44.9 60.8 66.2 36.3 31.5 47.6 57.4

VOC (25%)

Faster R-CNN 56k / 123k 17.9 11.2 22.9 39.2 42.7 40.1 55.8 60.9 31.6 27.0 41.1 51.6
OLN 56k / 123k 21.9 16.6 28.8 40.7 43.2 38.3 57.1 64.1 33.4 27.5 44.5 54.0
THPN (�CLS = 0) 56k / 160k 24.3 17.9 32.3 44.8 43.6 39.6 57.2 64.1 34.6 28.8 46.0 55.8
THPN (�CLS = 0.10) 56k / 160k 24.2 17.9 32.1 44.8 44.7 42.4 58.0 64.2 35.3 30.5 46.4 55.9
THPN (�CLS = 0.25) 56k / 160k 23.7 17.0 31.4 44.7 45.2 43.3 58.5 64.3 35.4 30.7 46.4 56.0
THPN (�CLS = 0.50) 56k / 160k 22.6 15.2 29.9 44.6 45.3 43.1 58.8 64.5 35.0 30.0 45.8 56.0

VOC (10%)

Faster R-CNN 33k / 49k 16.2 10.4 20.5 35.8 39.5 36.2 51.8 57.8 29.1 24.5 37.9 48.4
OLN 33k / 49k 19.8 15.2 25.7 37.3 40.8 36.3 53.6 61.0 31.3 26.0 41.3 50.8
THPN (�CLS = 0) 33k / 64k 22.9 16.9 30.3 42.4 41.5 37.3 54.5 61.8 33.0 27.2 43.7 53.5
THPN (�CLS = 0.10) 33k / 64k 23.0 17.2 30.2 42.4 42.3 39.5 55.0 61.9 33.5 28.6 43.9 53.6
THPN (�CLS = 0.25) 33k / 64k 22.6 16.4 29.9 42.4 42.8 40.4 55.5 62.1 33.6 28.9 44.1 53.7
THPN (�CLS = 0.50) 33k / 64k 21.9 15.0 29.1 42.5 43.0 40.3 55.9 62.2 33.4 28.4 44.0 53.8

Table 11. Results on the semi-supervised challenge when using a THPN trained with �CLS = 0.10. The listed �CLS in the table is the
value used during inference-time.

superior to the baselines in terms of OOD recall (regardless of k in AR@k). Because OLN also effectively has �CLS = 0, it
is clear that our self-training procedure is very effective in this domain. This is likely due to the fact that there are relatively
few labeled training instances compared to COCO. Given the correct setting of �CLS , THPN can also slightly improve the
ID recall on both splits.

F. Inference-time dynamic �CLS

In all other experiments, the �CLS associated with the THPN models is consistent during both training (i.e., loss weighting
and score weighting during pseudo-label generation) and inference (score weighting). For the sake of completeness, we
include results where we use one �CLS for training, and alter it during inference. This implementation of THPN makes
the model truly inference-time dynamic. We evaluate on the training class diversity and semi-supervised challenges using
�CLS = 0.10 during training. The results of these experiments are in Table 10 and Table 11, respectively. Overall, we find
that this inference-time-dynamic variant is capable of approaching the performance of the static-trained variant in terms of



ALL recall. However, it achieves this by creating a more optimal balance between OOD recall and ID recall, rather than
improving either one individually. The dynamic variants have much less deviation in performance between �CLS values.
Interestingly, the most optimal setting (in terms of ALL recall) for a dynamic THPN using �CLS = 0.10 during training
is to use �CLS = 0.25 during inference. Regardless, these experiments confirm that THPN can be treated as dynamic at
inference-time to good effect.

G. Pseudo-label visualizations

Figure 6. Visualization of pseudo-label boxes (cyan) alongside the original ground truth boxes (blue) on various training images. Here, we
consider the VOC split and the pseudo-labels are from a THPN (�CLS = 0.10) model with p=30%.

Figure 7. Visualization of pseudo-label boxes (cyan) alongside the original ground truth boxes (blue) on various training images. Here, we
consider the Warship split and the pseudo-labels are from a THPN (�CLS = 0) model with p=30%.



H. Prediction visualizations

Faster R-CNN OLN THPN

Figure 8. Visualization of predicted proposals (green) alongside the ground truth boxes (blue) on various COCO validation images. All
models are trained on the VOC5 split (THPN is trained with �CLS = 0). In general, THPN is able to detect many OOD objects that Faster
R-CNN and OLN misses. We find that a common failure mode of localization-based models is proposing parts of a larger object (e.g., a
person’s hand, the leg of a chair, etc.).



Faster R-CNN OLN THPN

Figure 9. Visualization of predicted proposals (green) alongside the ground truth boxes (blue) on various ShipRSImageNet validation
images. All models are trained on the Military split (THPN is trained with �CLS = 0). In general, THPN is able to detect many more
OOD ships than Faster R-CNN and OLN while maintaining performance on the ID military ships. We find that a common failure mode of
THPN on this dataset is to localize large defined objects on shore (e.g., storage containers, docks, etc.).



I. Training class diversity challenge splits

COCO Class Super Category COCO40 VOC VOC5 Animal

person person X X X
bicycle vehicle X X X
car vehicle X X X
motorcycle vehicle X X
airplane vehicle X X
bus vehicle X X
train vehicle X X
truck vehicle
boat vehicle X X
traffic light outdoor X
fire hydrant outdoor
stop sign outdoor X
parking meter outdoor
bench outdoor X
bird animal X X X
cat animal X X X
dog animal X X X X
horse animal X X X
sheep animal X X X
cow animal X X X
elephant animal X
bear animal X
zebra animal X
giraffe animal X
backpack accessory X
umbrella accessory
handbag accessory X
tie accessory
suitcase accessory
frisbee sports
skis sports X
snowboard sports
sports ball sports X
kite sports
baseball bat sports
baseball glove sports
skateboard sports X
surfboard sports X
tennis racket sports
bottle kitchen X X
wine glass kitchen
cup kitchen
fork kitchen X
knife kitchen
spoon kitchen
bowl kitchen X
banana food
apple food X
sandwich food
orange food
broccoli food
carrot food
hot dog food
pizza food X
donut food
cake food
chair furniture X X X
couch furniture X X
potted plant furniture X X
bed furniture
dining table furniture X X
toilet furniture X
tv electronic X X
laptop electronic X
mouse electronic
remote electronic X
keyboard electronic
cell phone electronic
microwave appliance
oven appliance X
toaster appliance
sink appliance X
refrigerator appliance X
book indoor
clock indoor
vase indoor
scissors indoor
teddy bear indoor
hair drier indoor
toothbrush indoor X
% Train Set 72.5 57.3 41.6 7.3
% Test Set 72.2 57.0 41.5 7.3

Table 12. Training splits for the training class diversity challenge.



J. Frequently Asked Questions (FAQ)
• Why do we call this method “for the Open World”?

– According to the terminology in the literature, “open-set recognition” refers to the task of dealing with OOD
inputs [55], while “open-world recognition” refers to the task of detecting OOD inputs and incrementally learning
them. In this work, we follow existing related work [32, 54] and refer to ”open-world” more generally as any
setting or environment that contains OOD instances in the test set. Importantly, THPN would be very useful to
incorporate into both open-set object detection models and open-world object detection models.

• Why do we not measure Average Precision?

– Computing precision for any class of object involves finding false positive predictions. In the case of class-agnostic
open-set object detection, while we have labels for some of the OOD objects in the test images (e.g., the non-VOC
COCO classes), this does not encapsulate all OOD objects in the test images. For example, “snowmobile” is not
a COCO class, however there exists images with snowmobile instances in the validation set. It would be unfair to
mark an accurate detection of an unlabeled snowmobile instance as a false positive. Therefore, we only consider
recall. This is common practice in this field of study [32, 33, 54]. Furthermore, a proposal network’s job is to
maximize recall on all objects. In a full object detection model, there is a second stage which makes the final
prediction refinement (e.g., R-CNN classification head).

• How is AR-AUC computed?

– The most common metric for performance for proposal networks is Average Recall @ k detections per image
(AR@k). The most common operating point to consider is AR@100, meaning the average recall when allowing
100 predictions per image. However, for some applications we may care about other operating points (e.g., k=10,
k=1000, etc.). Therefore, a reasonable summary statistic to use is AUC introduced by Kim et al. [32] which
computes the area under the curve of AR@k for k={10, 30, 50, 100, 300, 500, 1000}.

• Does THPN’s self-training require additional data that the baselines do not have access to?

– As mentioned in Section 5, during training, not only do we assume access to only ID labels of the ID classes in
the training set, we also ensure that THPN is only ever exposed to images that contain at least one ID label during
training and pseudo-label generation. Thus, our implementation of THPN does not use any unlabeled training
images, just like any non-self-trained baseline. While our implementation of THPN does not use auxiliary images
for self-training for the sake of fairness, it is certainly possible to do so. This can be seen as an additional degree
of flexibility of our method (as self-training can seamlessly ingest unlabeled data). We save investigating this for
future work.

• Why is classification-based objectness beneficial for ID detection and localization-based objectness beneficial for OOD
detection?

– Due to space constraints, we could not include all details about classification-based objectness and localization-
based objectness in the main paper. However, we detail these methods in Appendix A. Essentially, the difference
in behavior comes down to the fact that classification-based models rely on discriminative learning which forces
the model to sample negative regions that do not contain an ID object. The problem is, these negative regions often
contain OOD objects. Therefore, a classification-based model explicitly treats OOD objects as background, mean-
ing they are not detected during inference. Localization-based models instead frame objectness as the localization
quality (e.g., centerness [59] or IoU [28]) between a given region and any ground truth box. Critically, learning
localization-quality is not discriminative, so it does not require explicitly sampling negative regions. Thus, this
approach is inherently more likely to generalize to OOD objects [32]. However, what is not shown in the OLN
paper [32] is the fact that this improved OOD recall comes at the cost of reduced ID recall. Our solution (THPN)
offers a tunable, flexible model that can achieve the best of both worlds by learning and using both objectness
representations with a weight �CLS .

• Why do we not compare THPN to Open World Object Detection (OWOD) methods?



– While it may seem reasonable to compare THPN to the increasing number of OWOD models in the literature
[19, 29, 66, 70, 74], these models are for two very different tasks. OWOD models are full detection models that
attempt to incrementally learn novel classes using a human-in-the-loop. THPN, on the other hand, is a class-
agnostic proposal network. While THPN has the potential to greatly enhance the novel object detection capabilities
as a component any OWOD model (i.e., by replacing RPN with THPN), we feel this investigation is beyond the
scope of this paper, so we save it for future work.

• Can THPN made to be dynamic at inference time instead of only tunable at training time?

– In our implementation of THPN, we assume that the �CLS used during training is the same �CLS used during
inference. In this way, THPN is not necessarily meant to be tunable post-training. However, we also investigate
what happens when we train with a moderate �CLS = 0.10, and modulate �CLS during inference. Results from
this are in Appendix F. Overall, we find that while the results are not quite as good as when we modulate �CLS

during training, an inference-time-dynamic variant of THPN is still quite effective. Either variant outperforms all
baselines.

• What are the potential negative societal impacts?

– Powerful object detection algorithms enable a huge range of potential automated applications. While many of
these are righteous technologies (e.g., autonomous vehicles, more effective search and rescue, robots for the dis-
abled, etc.), there are of course several nefarious applications such as aggressive surveillance or weapon systems.
Regardless, due to the ubiquity of these models in the public domain, we argue that making these models as robust
and trustworthy as possible is overall a noble and important endeavor.


	. Introduction
	. Related work
	. Learning open-set proposals
	. Tunable Hybrid Proposal Network (THPN)
	. Self-training procedure
	. Model architecture and losses
	. Implementation details

	. Experiments
	. COCO benchmark challenge
	. Training class diversity challenge
	. Semi-supervised challenge
	. Ships challenge
	. Analysis of model design

	. Conclusion

