RPN

[Classification —— *
RPN ificati Acws * Leg

RPN THPN

L [Loc.Quality ——> (1 —Acs) * Ligr
Backbone

Liow \ (BBox Reg. —> Lwiou
l Proposals
(Rol Head \

Ly [Classification == Acys * Log

Faster R-CNN

Loc. Quality

BBox Reg.

Proposals

Classification

BBox Reg.

Proposals

Backbone

—

lis

Rol Head Rol Head

Loc. Quality

BBox Reg.

Classification

BBox Reg.

Ly > Loc.Quality ——> (1 —A¢ps) * Ligr

[BBox Reg. —> Ly

Figure 5. Differences between Faster R-CNN, OLN, and our hybrid THPN architecture.

Appendix
A. Overview of baseline methods

There are currently three types of object proposals methods: (1) learning-free approaches, (2) classification-based learning
approaches, and (3) pure localization-based learning approaches. In this section, we outline the methodology for each and
discuss their respective drawbacks. See Fig. 5 for a visual representation of the architectural differences between our approach
and existing proposal networks.

Learning-free approaches. Early approaches for generating object proposals rely on hand-crafted features such as contrast
and edges. Krihenbiihl and Koltun [34] identify critical level sets in geodesic distance transforms computed over carefully
placed seeds to generate proposals. Uijlings et al. [60] propose Selective Search, an algorithm that performs a graph-based
segmentation and greedily merges superpixels based on color, texture, size, and shape similarity. Edge Boxes [75] is a box
proposal algorithm that works by efficiently computing and finding enclosed edge contours in an image. Finally, Multiscale
Combinatorial Grouping (MCG) [50] performs multi-scale segmentation and groups regions by efficiently exploring their
combinatorial space. These methods were once the backbone of many early object detection systems such as Fast R-CNN
[16], but have since been outclassed by learning-based approaches in terms of efficiency and recall performance.

Classification-based learning approaches. The seminal learning-based proposal solution is the Region Proposal Network
(RPN) [51]. For a predefined set of anchor boxes, RPN learns to predict box coordinate regression deltas as well as an “ob-
jectness” score which indicates the likelihood that the box contains a foreground object of interest as opposed to background
or an object from a class outside of the training distribution. While the single-stage RPN serves as an efficient benchmark
solution for many state-of-the-art detection systems [6,21,51], we primarily focus on two-stage approaches in this work as
they have been shown to have significantly better generalization abilities [29, 32, 64]. Thus, we consider a class-agnostic
Faster R-CNN model as a stronger baseline, in which all annotations are treated as instances of the same class. The loss
function for both stages of a class agnostic Faster R-CNN model (i.e., RPN and Rol Head) for an image is defined as:

1 * 1 * *
Lrpn ({ei}, {t:}) = N Z Lpcr(ci,ci) + Am Z c; Li(ti, 7). 4)

Here, 7 is the anchor index, c; is the predicted probability of anchor ¢ containing an object, and ¢; are the predicted box
regression deltas for anchor 7. The ground truth labels for objectness and box regression are shown as c; and ¢, respectively.
The box regression head is trained with an L; loss. The objectness head of RPN is trained with a binary cross-entropy loss
LpcEg, and a sampler is used to ensure 50% of boxes sampled during training are positive matches to some ground truth
object.

Kim et al. [32] point out that framing object proposal as a discriminative task hinders generalization as it involves indis-
criminate sampling of negative regions when training the objectness head(s). In other words, because we only have access
to labels from a subset of object classes that exist in the world, the model overfits to the labeled object classes and treats all
unlabeled objects as background.

Pure localization-based learning approach. Object Localization Network (OLN) [32] provides an alternative to
classification-based approaches in an effort to resolve the aforementioned overfitting issue. OLN uses the same architecture

as Faster R-CNN, but it replaces the classification heads with localization quality prediction heads. OLN uses centerness [59]
and IoU score [28] as substitutes for objectness in the OLN-RPN and OLN-Box stages, respectively. Thus, OLN is a pure
localization-based proposal network trained with the following loss function:

Loy ({g;}, {ti}) = 7ZL1 (45, 45) +)‘

3 Lt) (5)

Here, ¢; and ¢; are the predicted and target localization quality scores, respectively. Note that we use a separate index j
because the set of sampled anchors for the L@ head can be different than the set of sampled anchors for the BOX head.
Because we are not training a discriminative classification task, we only need to sample positively matched anchors to train
the L() head. Intuitively, if a model can accurately predict its overlap ¢; € [0, 1] with a ground truth object, we can effectively
treat ¢; as a notion of objectness. This re-framing of the sparse classification problem allows the model to be less biased
towards the specific classes that it is trained on.

While OLN resolves the explicit bias resulting from learning to classify all unlabeled regions as background, we posit that
it still suffers from implicit bias because it still only learns from ID instances. Adding to the bias problem is the fact that
there exists a natural class imbalance issue in natural data. While OLN’s generalization benefits over Faster R-CNN is shown
to be significant when it is trained on a diverse and representative class set such as PASCAL VOC [12], we hypothesize that
it will struggle when faced with more challenging tasks with fewer ID classes and fewer labeled instances.

reg

B. Learning-free baseline comparison

ALL
Method AR10 ARI100
Geodesic [34] 4.0 18.0
Sel. Search [60] 52 16.3
EdgeBoxes [75] 7.4 17.8
MCG [50] 10.1 24.6

THPN (Acrs = 0.50) 41.0 59.9

Table 6. ALL recall comparison with learning-free baselines on the COCO dataset. The THPN (trained on all COCO classes) significantly
outperforms these approaches. Results for baselines are borrowed from [49].

While learning-free approaches to object proposal have been largely supplanted by deep learning-based methods, we feel
that they are still worth worth comparing against. For this test, we compare recall on all classes in the COCO validation set.
For this experiment, we use a THPN with Ao = 0.50 to promote the optimal ID recall. Tab. 6 shows that THPN outclasses
all learning-free baselines by a significant margin.

C. Closed-set performance

THPN'’s design is primarily suited for handling open-set tasks that assume the presence of OOD objects of interest.
However, we notice that a THPN with a larger Acrg is capable of superior ID performance to pure classification-based
models like Faster R-CNN. For completeness, we test our model’s performance in closed-set tasks. The results of this
test are in Tab. 7. We train each model on all classes of COCO or ShipRSImageNet (except docks) and test on the complete
validation sets. Note that we do not use self-training or crop & zoom augmentations here to test the impact of the architectural
differences only. On the large-scale COCO dataset, Faster R-CNN outperforms OLN. However, THPN with Acps > 0.10
beats both baselines. Setting Acr.s = 0.50 is the best in this case, beating Faster R-CNN by +2.4 AUC. On the smaller ships
data, OLN is superior to Faster R-CNN, and THPN with Aczs < 0.25 outperforms OLN by +0.8 AUC.

D. Data augmentation and training schedule

Tab. 8 shows the effect of various data augmentations and training schedules on an OLN model trained on the VOC split.
In this work, we borrow transform implementations from mmdetection [7]. We find that the crop & zoom augmentation is the
most effective for improving OOD generalization of an OLN-style of proposal network. However, all augmentations come at
a slight cost of ID recall. We also find that using a 2x training schedule (16 epochs) is beneficial only if using the additional
strong augmentations.

Test ALL

Dataset Model Images Instances AUC AR10 ARI100 AR1000
Faster R-CNN 117k 860k 429 381 57.1 63.1
olw o oo 17k 860k 396 298 548 644
THPN (A¢crs = 0) 117k 860k 396 298 54.8 64.4

THPN (Acrs = 0.10) 117k 860k 43.1 37.4 57.5 65.0
COCO THPN (Acps = 0.25) 117k 860k 447 404 59.1 65.6
THPN (Acrs = 0.50) 117k 860k 453 410 59.9 66.2
THPN (Acrs = 0.75) 117k 860k 45.1 40.6 59.7 66.2
THPN (Acs = 0.90) 117k 860k 448 40.1 59.3 66.2

THPN (\crs = 1) 117k 860k 447 399 592 66.0
Faster R-CNN 2.2k 10k 502 515 63.1 68.4
OLN 2.2k 10k 514 515 657 70.3
THPN (\crs = 0) 2.2k 10k 51.6 517 66.0 70.3
THPN (\crs = 0.10) 2.2k 10k 51.6 527 656 69.6
Ships THPN (Acrs = 0.25) 2.2k 10k 51.8 53.1 65.8 69.7
THPN (\crs = 0.50) 2.2k 10k 51,1 526 646 68.9
THPN (\crs = 0.75) 2.2k 10k 514 528 652 69.4
THPN (\crs = 0.90) 2.2k 10k 509 524 643 69.3
THPN (\cs = 1) 2.2k 10k 51.0 523 649 68.8

Table 7. Results on closed-set tasks. Here, we assume all instances of all classes of interest are labeled.

Augmentation Epochs OOD-AUC ID-AUC ALL-AUC
None 8 24.8 44.8 355
Crop & Zoom 8 25.5 43.0 34.8
Discrete Rotate 8 24.8 40.3 33.0
Random Affine 8 235 423 33.6
Photometric Distortion 8 25.0 44.4 354
Crop & Zoom + Photometric Distortion 8 25.5 42.0 342
None 16 24.8 44.8 35.5
Crop & Zoom 16 26.1 44.2 35.8
Discrete Rotate 16 25.4 41.8 34.0
Random Affine 16 24.0 43.7 34.5
Crop & Zoom + Photometric Distortion 16 26.0 43.7 354

Table 8. Effect of augmentation and training schedule on an OLN model trained on the VOC split.

Images / 00D ID ALL
Split Model Instances | AUC ARIO ARI100 ARIlk | AUC ARI10 ARIO0 ARlk | AUC ARI0O ARIO0 ARIlk
Faster R-CNN 1.5k /4.7 | 11.8 11.8 12.2 243 | 656 75.6 79.4 813 | 333 37.1 39.1 47.1
OLN 1.5k/4.7k | 23.0 234 28.1 358 | 69.0 792 84.4 854 | 413 452 50.6 55.6

THPN (Acrs = 0) 1.5k/6.1k | 29.0 284 37.1 40.7 | 68.8 783 84.2 85.1 | 44.7 477 56.0 58.5
THPN (A\¢rs = 0.10) 1.5k/6.1k | 26.6 27.0 33.6 37.8 | 69.3 794 84.7 854 | 436 475 54.1 56.9
THPN (A\¢crs = 0.25) 1.5k/6.1k | 224 23.1 27.3 338 | 69.0 793 84.1 849 | 409 452 50.0 54.3
THPN (A\¢rs = 0.50) 1.5k/6.1k | 16.1 16.8 19.2 258 | 683 787 83.1 844 | 369 413 44.7 49.2
Faster R-CNN 1.0k/4.4k | 16.0 16.8 17.8 29.1 | 334 295 44.3 512 | 246 226 31.0 40.1
OLN 1.0k/4.4k | 387 384 49.2 56.6 | 35.6 30.7 479 543 | 369 338 48.5 55.5

Military

THPN (A¢crs = 0) 1.0k/5.7k | 49.8 504 63.5 683 | 365 303 49.1 56.7 | 428 393 56.2 62.5
THPN (A\¢rs =0.10) 1.0k/5.7k | 463 472 58.4 642 | 364 314 48.5 550 | 41.0 382 53.4 59.6
THPN (A\crs = 0.25) 1.0k/5.7k | 339 344 41.6 525 | 358 315 47.6 540 | 346 320 44.5 533
THPN (A\¢crs = 0.50) 1.0k/5.7k | 24.1 228 28.7 428 | 355 311 46.9 54.1 | 295 262 37.7 48.5

Civilian

Table 9. Full results on the ships challenge.

E. Full ship detection results

For the purposes of space efficiency, we show a summary of the results from the ships challenge in Sec. 5.4 of the main
text. In this section, we provide the full results of this experiment in Tab. 9. In both splits, THPN with Acrs = 0 is vastly

Images / OOD D ALL

Split Model Instances | AUC__ARI0 ARI00 ARIk | AUC ARIO ARI00 ARIk | AUC ARI0 ARI00 ARIk
Faster R-CNN 104k/623k | 266 175 360 514 | 444 414 583 632 | 390 338 517 600

JON 104k 7623k | 33.1 258 448 546 | 421 346 572 650 | 389 305 33 622
cocoso THPN (crs = 0) 104k /810k | 341 280 456 552 | 416 346 562 640 | 389 31 528 616

THPN (A\cs = 0.10) 104k / 810k | 34.8 29.8 46.0 553 | 440 396 58.1 64.6 | 40.7 35.1 54.3 62.0
THPN (Acrs = 0.25) 104k/810k | 345 292 45.6 554 | 450 415 59.0 65.0 | 415 36.5 54.9 62.4
THPN (\¢s = 0.50) 104k /810k | 33.6 28.0 44.5 553 | 451 417 60.7 647 | 344 299 44.8 55.1

Faster R-CNN 95k/493k | 193 116 251 424 | 467 451 607 647 | 344 299 448 551
JOLN - 95k/493k | 248 184 332 450 | 448 401 593 661 | 355 291 475 569
VO THPN (Acrs = 0) 95k/641k | 27.7 213 369 480 | 448 399 595 660 | 367 30 493 583

THPN (A\¢rs = 0.10) 95k/ 641k | 27.9 22.0 371 48.0 | 468 442 60.9 66.5 | 38.0 329 50.2 58.5
THPN (Acrs = 0.25) 95k/641k | 27.5 214 36.6 480 | 476 458 61.8 66.8 | 384 33.7 50.5 58.8
THPN (A\¢rs = 0.50) 95k / 641k | 264 198 35.0 478 | 478 46.1 62.1 67.1 | 38.0 335 50.0 58.9

Faster R-CNN 74k/357k | 163 9.8 207 38.1 | 481 476 622 656 | 29.1 248 374 496
JOLN - 74k/357k | 203 141 269 401 | 476 452 617 678 | 310 257 408 516
vocs THPN (\crs =0) 74k/465k | 235 171 313 439 | 468 439 6L1 670 | 326 267 432 537

THPN (A¢rs = 0.10) 74k / 465k | 23.7 17.6 31.5 439 | 483 471 62.4 67.4 | 333 284 43.8 53.7
THPN (Acrs = 0.25) 74k/465k | 23.6 174 31.1 439 | 490 484 63.1 67.7 | 33.5 289 439 53.8
THPN (A\¢1s = 0.50) 74k / 465k | 2277 16.1 30.0 439 | 493 487 63.5 67.8 | 332 285 43.4 53.8

Faster R-CNN 24k/63k | 115 60 135 313 | 539 589 671 694 | 146 98 175 341
oo oo 24k/63k | 133 82 164 315 | 558 597 697 732 | 164 119 203 346
Animal THPN Qczs = 0) 24k/81k | 169 99 229 367 | 555 590 697 730 | 197 134 263 393

THPN (A\¢rs = 0.10) 24k / 81k 17.0 104 229 36.6 | 56.1 60.6 69.9 73.0 | 198 139 26.3 39.3
THPN (Acrs = 0.25) 24k/8lk 170 103 22.8 36.6 | 56.6 615 70.5 732 | 19.8 14.0 26.3 39.3
THPN (A\¢rs = 0.50) 24k / 81k 15.9 9.3 20.7 36.6 | 56.8 61.9 70.8 733 | 189 13.1 24.4 39.3

Table 10. Results on the training class diversity challenge when using a THPN trained with Acrs = 0.10. The listed Acrs in the table is
the value used during inference-time.

Images / 00D ID ALL
Split Model Instances | AUC ARI0 ARI00 ARIk | AUC ARI0 ARIO0 ARIk | AUC ARIO ARI0O0 ARIk
Faster R-CNN 75k/246k | 18.7 117 241 409 | 448 427 585 63.1 | 331 285 432 536
OLN 75k/246k | 238 177 317 438 | 444 395 588 657 | 349 285 467 563
vOC (50%) THPN (rers = 0) 75k/320k | 25.7 194 342 459 | 447 409 586 654 | 359 301 476 571
THPN (Acrs = 0.10) 75k/320k | 257 19.6 340 459 | 461 441 597 657 | 367 320 481 572

THPN (Acrs = 0.25) 75k /320k | 25.1 18.5 333 458 | 46.8 453 60.5 66.0 | 369 324 48.3 574
THPN (Acrs = 0.50) 75k /320k | 23.7 163 31.4 457 | 46.8 449 60.8 66.2 | 363 315 47.6 57.4

Faster R-CNN 56k /123k | 17.9 11.2 229 392 | 427 401 55.8 609 | 316 270 41.1 51.6
OLN 56k /123k | 21.9 16.6 28.8 40.7 | 432 383 57.1 64.1 | 334 275 44.5 54.0
VOC (25%) THPN (A¢rs = 0) 56k/160k | 243 179 323 448 | 43.6 39.6 57.2 64.1 | 346 288 46.0 55.8
THPN (A¢rs = 0.10) 56k /160k | 242 179 321 448 | 447 424 58.0 642 | 353 305 46.4 55.9

THPN (Acrs = 0.25) 56k / 160k | 23.7 17.0 31.4 447 | 452 433 58.5 643 | 354 307 40.4 56.0
THPN (Acrs = 0.50) 56k/160k | 22.6 15.2 29.9 446 | 453 431 58.8 64.5 | 35.0 30.0 45.8 56.0

Faster R-CNN 33k/49% | 162 104 205 358 | 395 362 518 578 | 201 245 379 484
JOLN o 33Kk/49 | 198 152 257 373 | 408 363 536 610 | 313 260 413 508
vOC (10%) THPN (ers = 0) 33k/64k | 229 169 303 424 | 415 373 545 618 | 330 272 437 535

THPN (A¢crs = 0.10) 33k/64k | 23.0 17.2 30.2 424 | 423 395 55.0 619 | 335 28.6 439 53.6
THPN (Acrs = 0.25) 33k/64k | 22.6 164 29.9 424 | 428 404 55.5 62.1 | 33.6 289 44.1 53.7
THPN (Acrs = 0.50) 33k/64k | 219 15.0 29.1 425 | 43.0 403 55.9 622 | 334 284 44.0 53.8

Table 11. Results on the semi-supervised challenge when using a THPN trained with Acr.s = 0.10. The listed Acrs in the table is the
value used during inference-time.

superior to the baselines in terms of OOD recall (regardless of k in AR@Fk). Because OLN also effectively has Acrg = 0, it
is clear that our self-training procedure is very effective in this domain. This is likely due to the fact that there are relatively
few labeled training instances compared to COCO. Given the correct setting of A\crs, THPN can also slightly improve the
ID recall on both splits.

F. Inference-time dynamic \c ¢

In all other experiments, the A¢ 1, g associated with the THPN models is consistent during both training (i.e., loss weighting
and score weighting during pseudo-label generation) and inference (score weighting). For the sake of completeness, we
include results where we use one A¢pg for training, and alter it during inference. This implementation of THPN makes
the model truly inference-time dynamic. We evaluate on the training class diversity and semi-supervised challenges using
Acrs = 0.10 during training. The results of these experiments are in Table 10 and Table 11, respectively. Overall, we find
that this inference-time-dynamic variant is capable of approaching the performance of the static-trained variant in terms of

ALL recall. However, it achieves this by creating a more optimal balance between OOD recall and ID recall, rather than
improving either one individually. The dynamic variants have much less deviation in performance between A¢pg values.
Interestingly, the most optimal setting (in terms of ALL recall) for a dynamic THPN using Acrs = 0.10 during training
is to use Acrs = 0.25 during inference. Regardless, these experiments confirm that THPN can be treated as dynamic at
inference-time to good effect.

G. Pseudo-label visualizations

Figure 6. Visualization of pseudo-label boxes (cyan) alongside the original ground truth boxes (blue) on various training images. Here, we
consider the VOC split and the pseudo-labels are from a THPN (A¢crs = 0.10) model with p=30%.

Figure 7. Visualization of pseudo-label boxes (cyan) alongside the original ground truth boxes (blue) on various training images. Here, we
consider the Warship split and the pseudo-labels are from a THPN (Acrs = 0) model with p=30%.

lizations

1011 visua,

H. Predict

af...4..i.
I TS Py T
e antatatadndetate e

£259000%0 2000200006000 8 a2 60!
e%uouu%o- 820,

Sesessseataed
9200950404808,
08s200000005034:]
00000 30%0%0!

9 OG‘ 0

X %
oeom-u-ncun
2

THPN

85053000 00g0;

ea0ee 20248,

2500e 8! 03

0g850 50 0800 PR
6358095820 23094950,
202005630225 262808036

...J. =....e.n.ﬁe..-,.é.s£f
O R R R O
1962020 6820n30000000,140,05%000 00,
2, .onou»uonwuw%o Se00ac0008026202
o !
o”a".uo»ooenowwo Jo2e20g
05030502058
9500050500

092
age
0508050,
0366000480050g9!

OLN

9, 7
03800505 ¢
03020858503 020%0!
026209500 0262002

58T e250505% Z0305TETLTREOYE
108020840,%40, 2a% TP
8600008s707 ose5easesasatede
Seds202039,

2

Faster R-CNN

green) alongside the ground truth boxes (blue) on various COCO validation images. All

Figure 8. Visualization of predicted proposals (

THPN is able to detect many OOD objects that Faster

s

= 0). In general

models are trained on the VOCS split (THPN is trained with Acrs

based models is proposing parts of a larger object (e.g., a

R-CNN and OLN misses. We find that a common failure mode of localization

person’s hand, the leg of a chair, etc.).

Faster R-CNN

~,

Figure 9. Visualization of predicted proposals (green) alongside the ground truth boxes (blue) on various ShipRSImageNet validation
images. All models are trained on the Military split (THPN is trained with Acrs = 0). In general, THPN is able to detect many more
OOD ships than Faster R-CNN and OLN while maintaining performance on the ID military ships. We find that a common failure mode of
THPN on this dataset is to localize large defined objects on shore (e.g., storage containers, docks, etc.).

I. Training class diversity challenge splits

COCO Class Super Category COCO40 VOC VOC5 Animal

person person v v v
bicycle vehicle v v
car vehicle v v v
motorcycle vehicle v v
airplane vehicle v v
bus vehicle v v
train vehicle v v
truck vehicle
boat vehicle v '
traffic light outdoor v
fire hydrant outdoor
stop sign outdoor v
parking meter outdoor
bench outdoor v
bird animal v ' v
cat animal v v v
dog animal v v ' v
horse animal v v v
sheep animal v v v
cow animal v v v
elephant animal v
bear animal v
zebra animal v
giraffe animal v
backpack accessory v
umbrella accessory
handbag accessory v
i accessory
accessory
sports
sports v
snowboard sports
sports ball sports v
kite sports
baseball bat sports
baseball glove sports
skateboard sports v
sports v
sports
kitchen v
wine glass kitchen
cup kitchen
fork kitchen v
knife kitchen
spoon kitchen
bowl kitchen
banana food
apple food v
sandwich food
orange food
broccoli food
carrot food
hot dog food
pizza food v
donut food
cake food
chair furniture v v '
couch furniture v v
potted plant furniture v v
bed furniture
dining table furniture v v
toilet furniture v
tv electronic v '
laptop electronic v
mouse electronic
remote electronic v
keyboard electronic
cell phone electronic
microwave appliance
oven appliance v
toaster appliance
sink appliance v
refrigerator appliance v
book indoor
clock indoor
vase indoor
scissors indoor
teddy bear indoor
hair drier indoor
toothbrush indoor v
% Train Set 2.5 573 416 713
% Test Set 722 570 415 73

Table 12. Training splits for the training class diversity challenge.

J. Frequently Asked Questions (FAQ)
* Why do we call this method “for the Open World”?

— According to the terminology in the literature, “open-set recognition” refers to the task of dealing with OOD
inputs [55], while “open-world recognition” refers to the task of detecting OOD inputs and incrementally learning
them. In this work, we follow existing related work [32, 54] and refer to “open-world” more generally as any
setting or environment that contains OOD instances in the test set. Importantly, THPN would be very useful to
incorporate into both open-set object detection models and open-world object detection models.

* Why do we not measure Average Precision?

— Computing precision for any class of object involves finding false positive predictions. In the case of class-agnostic
open-set object detection, while we have labels for some of the OOD objects in the test images (e.g., the non-VOC
COCO classes), this does not encapsulate all OOD objects in the test images. For example, “snowmobile” is not
a COCO class, however there exists images with snowmobile instances in the validation set. It would be unfair to
mark an accurate detection of an unlabeled snowmobile instance as a false positive. Therefore, we only consider
recall. This is common practice in this field of study [32, 33, 54]. Furthermore, a proposal network’s job is to
maximize recall on all objects. In a full object detection model, there is a second stage which makes the final
prediction refinement (e.g., R-CNN classification head).

* How is AR-AUC computed?

— The most common metric for performance for proposal networks is Average Recall @ k detections per image
(AR@k). The most common operating point to consider is AR@ 100, meaning the average recall when allowing
100 predictions per image. However, for some applications we may care about other operating points (e.g., k=10,
k=1000, etc.). Therefore, a reasonable summary statistic to use is AUC introduced by Kim et al. [32] which
computes the area under the curve of AR@k for k={10, 30, 50, 100, 300, 500, 1000}.

* Does THPN’s self-training require additional data that the baselines do not have access to?

— As mentioned in Section 5, during training, not only do we assume access to only ID labels of the ID classes in
the training set, we also ensure that THPN is only ever exposed to images that contain at least one ID label during
training and pseudo-label generation. Thus, our implementation of THPN does not use any unlabeled training
images, just like any non-self-trained baseline. While our implementation of THPN does not use auxiliary images
for self-training for the sake of fairness, it is certainly possible to do so. This can be seen as an additional degree
of flexibility of our method (as self-training can seamlessly ingest unlabeled data). We save investigating this for
future work.

* Why is classification-based objectness beneficial for ID detection and localization-based objectness beneficial for OOD
detection?

— Due to space constraints, we could not include all details about classification-based objectness and localization-
based objectness in the main paper. However, we detail these methods in Appendix A. Essentially, the difference
in behavior comes down to the fact that classification-based models rely on discriminative learning which forces
the model to sample negative regions that do not contain an ID object. The problem is, these negative regions often
contain OOD objects. Therefore, a classification-based model explicitly treats OOD objects as background, mean-
ing they are not detected during inference. Localization-based models instead frame objectness as the localization
quality (e.g., centerness [59] or IoU [28]) between a given region and any ground truth box. Critically, learning
localization-quality is not discriminative, so it does not require explicitly sampling negative regions. Thus, this
approach is inherently more likely to generalize to OOD objects [32]. However, what is not shown in the OLN
paper [32] is the fact that this improved OOD recall comes at the cost of reduced ID recall. Our solution (THPN)
offers a tunable, flexible model that can achieve the best of both worlds by learning and using both objectness
representations with a weight A\crs.

* Why do we not compare THPN to Open World Object Detection (OWOD) methods?

— While it may seem reasonable to compare THPN to the increasing number of OWOD models in the literature
[19,29,66,70,74], these models are for two very different tasks. OWOD models are full detection models that
attempt to incrementally learn novel classes using a human-in-the-loop. THPN, on the other hand, is a class-
agnostic proposal network. While THPN has the potential to greatly enhance the novel object detection capabilities
as a component any OWOD model (i.e., by replacing RPN with THPN), we feel this investigation is beyond the
scope of this paper, so we save it for future work.

e Can THPN made to be dynamic at inference time instead of only tunable at training time?

— In our implementation of THPN, we assume that the Ac s used during training is the same Acrs used during
inference. In this way, THPN is not necessarily meant to be tunable post-training. However, we also investigate
what happens when we train with a moderate A\cys = 0.10, and modulate Aoy g during inference. Results from
this are in Appendix F. Overall, we find that while the results are not quite as good as when we modulate Acrs
during training, an inference-time-dynamic variant of THPN is still quite effective. Either variant outperforms all
baselines.

* What are the potential negative societal impacts?

— Powerful object detection algorithms enable a huge range of potential automated applications. While many of
these are righteous technologies (e.g., autonomous vehicles, more effective search and rescue, robots for the dis-
abled, etc.), there are of course several nefarious applications such as aggressive surveillance or weapon systems.
Regardless, due to the ubiquity of these models in the public domain, we argue that making these models as robust
and trustworthy as possible is overall a noble and important endeavor.

	. Introduction
	. Related work
	. Learning open-set proposals
	. Tunable Hybrid Proposal Network (THPN)
	. Self-training procedure
	. Model architecture and losses
	. Implementation details

	. Experiments
	. COCO benchmark challenge
	. Training class diversity challenge
	. Semi-supervised challenge
	. Ships challenge
	. Analysis of model design

	. Conclusion

