
Appendix to “Think before You Simu-
late: Symbolic Reasoning to Orchestrate
Neural Computation for Counterfactual
Question Answering”

Section A describes more details about the datasets. Sec-
tion B details implementation of CRCGapprox in ASP. Sec-
tion C gives the examples of the three methods for the
CRAFT experiment (Section 6). Section D describes the
details of how we achieve the SOTA performance on all four
types of the CLEVRER questions accompanied by ablation
studies. Section E presents the full ASP programs we wrote.

All experiments were done on Ubuntu 18.04.2 LTS with
two 10-core CPU Intel(R) Xeon(R) CPU E5-2640 v4 @
2.40GHz and four GP104 [GeForce GTX 1080]. We use
Clingo version 5.3.0. ASP solving time is instant.

A. Datasets
A.1. CLEVRER

The CLEVRER dataset [32] consists of 20K synthetic
videos of colliding objects and more than 300K questions
about objects in motion and their interactions. The videos
are five seconds with a total of 127 frames and contain var-
ious objects moving and colliding with each other. The
questions about the videos are divided into four categories.
Descriptive questions are about intrinsic attributes of ob-
jects, such as color, shape, and material, and the events re-
lated to the objects, such as collision and entering/exiting
the scenes. Explanatory questions are about if an object
or a collision event is a cause for another collision event
or an object exiting the scene. Predictive questions are
about whether a collision will happen after the video ends.
Counterfactual questions are about collisions that would or
would not happen if some object in the video were removed.
Except for descriptive questions, which require short an-
swers, all the other questions are multiple-choice questions
requiring one to select all true choices.

A.2. CRAFT
The CRAFT dataset [2] consists of 10K videos involving

causal relations between falling and sliding objects, along
with 57K questions. Compared to CLEVRER, CRAFT in-
troduces additional events and has many different environ-
ments, including various configurations of immovable ob-
jects such as ramps and the basket. The three main cat-
egories of questions are descriptive, causal, and counter-
factual. We focus only on counterfactual questions, which
have 6 types. These question types are generally more com-
plex than CLEVRER counterfactual questions, sometimes
requiring multiple counterfactual simulations (e.g., “Will
the large green square enter the basket if any of the other
objects are removed?”), or counting (e.g., “How many ob-
jects fall to the ground if the small blue box is removed?”).

The counterfactual questions in the CRAFT dataset are
comprised of 6 types. Examples of each are as follows:

Type 1: Removing one object, does enter event happen?
If the small brown triangle is removed, will the big green

circle fall into the bucket?
Will the large cyan circle end up in the basket if the tiny

cyan triangle is removed?
Will the tiny purple circle fall into the container if the

tiny purple triangle is removed?

Type 2: Removing one object, does ground collision event
happen?

will the small purple triangle hit the floor if the large
gray circle is removed?

will the large gray circle hit the ground if the tiny
purple triangle is removed?

will the small purple circle fall to the ground if the big
gray circle is removed?

Type 3: Removing one object, how many enter events happen?
How many objects go into the bucket if the tiny gray circle

is removed?
If the tiny yellow triangle is removed, how many objects

get into the basket?
How many objects get into the basket if the large green

triangle is removed?

Type 4: Removing one object, how many ground collision
events?

If the small gray circle is removed, how many objects hit
the ground?

How many objects fall to the ground if the big red triangle
is removed?

If the large brown triangle is removed, how many objects
fall to the ground?

Type 5: Removing any object, does enter event happen?
Will the tiny purple triangle fall into the bucket if any

of the other objects are removed?
Will the small gray circle fall into the bucket if any of

the other objects are removed?
If any of the other objects are removed, will the large

yellow triangle get into the basket?

Type 6: Removing any object, does ground collision happen?
If any one of the other objects are removed, will the tiny

purple circle fall to the floor?
Will the large blue triangle hit the floor if any of the

other objects are removed?
If any one of the other objects are removed, will the big

gray cube hit the ground?

B. Implementation of CRCGapprox (Sec 3.3) us-
ing ASP

If the frame-by-frame simulator is not accessible, we use
the approximation of Algorithm 1 to answer. For this, we
need a few more ASP rules. For a counterfactual ques-
tion Q = ⟨Oc, o1, o2⟩, and its prediction pQ ∈ {yes, no}
from any baseline, let’s represent the prediction pQ as
predict(Q, yes) or predict(Q, no) according
to its value and represent each collision ⟨i, j, t⟩ in C with
event(i,collide,j,t).

Determined The result of a counterfactual question Q =
⟨Oc, o1, o2⟩ is determined to be yes if the collision hap-
pened in the video at a time when the states of o1 and o2 are
not affected by the removed object.

determined(Q, yes) :- query(Q, qobj(I1), Event, qobj(I2)),
same(qobj(I1), O1), same(qobj(I2),O2),
event(O1, Event, O2, F),
not affected(O1,F), not affected(O2,F).

Here, query(Q,qobj(1),Event,qobj(2)) repre-
sents “query Q is about the Event happening between ob-
jects o1 and o2,” and same(qobj(1),O) represents “o1
is the same as the O-th object in the video.”

The result is determined to be no if o1 or o2 is removed,

determined(Q, no) :- query(Q, qobj(I1), Event, qobj(I2)),
same(qobj(I1), O1), same(qobj(I2),O2),
removed(O1): not removed(O2).

or if the collision didn’t happen in the video and the states
of o1 and o2 are not affected by the removed objects.

determined(Q, no) :- query(Q, qobj(I1), Event, qobj(I2)),
same(qobj(I1), O1), same(qobj(I2),O2),
not event(O1, Event, O2, _),
not affected(O1,_), not affected(O2,_).

Then, given a prediction pQ, the answer to Q is Res if
(i) the result of Q is determined to be Res, or (ii) the value
of pQ is Res, and the result of Q is not determined.

answer(Q, Res) :- determined(Q, Res).
answer(Q, Res) :- predict(Q, Res), not determined(Q, _).

The answer to Q = ⟨Oc, o1, o2⟩ is directly obtained from
the value of Res in the answer atoms that are derived.

C. Example Flow of CRAFT Experiment
The GPT-x model used in our experiments is “text-

davinci-002” and the temperature is set to 0 for the repro-
ductivity of all experiments. A description-query pair for
example video #1,179 (shown in Figure 6) from the CRAFT
test set is:

Start. Large cyan circle collides with small yellow circle.
Small purple triangle enters basket. Large cyan
circle collides with small yellow circle. Small purple
triangle collides with basket. End.

Will the tiny purple triangle end up in the basket if the
large cyan circle is removed?

C.1. GPT-x Baseline

In the GPT-x baseline, a counterfactual question is asked
directly in a prompt, consisting of an instruction, a video
description (from the CRAFT dataset), and the counterfac-
tual question itself. An example prompt for the example in
Figure 6 is shown below.

Instructions: A description of a scene of moving objects
and their physical dynamics is presented. A question
is then asked about hypothetical changes in the scene
and their outcomes.

Description: Start. Large cyan circle collides with small
yellow circle. Small purple triangle enters basket.
Large cyan circle collides with small yellow circle.
Small purple triangle collides with basket. End.

Will the tiny purple triangle end up in the basket if the
large cyan circle is removed? (yes or no)

For this example, the GPT-x responds “No”, which is incor-
rect.

C.2. CRCGapprox
GPTx : Enhance GPT-x Baseline with

CRCGapprox

We describe the whole process with the above example.
From the description-query pair

Start. Large cyan circle collides with small yellow circle.
Small purple triangle enters basket. Large cyan
circle collides with small yellow circle. Small purple
triangle collides with basket. End.

Will the tiny purple triangle end up in the basket if the
large cyan circle is removed?

we first use a python script to extract the following atomic
facts into an ASP program ‘input.lp’.

size(0,large).color(0,cyan).shape(0,circle).
size(1,small).color(1,purple).shape(1,triangle).
size(2,small).color(2,yellow).shape(2,circle).
size(95,large).color(95,black).shape(95,ground).
size(97,large).color(97,black).shape(97,basket).
collision(0,2,0).
collision(0,2,2).
collision(1,97,3).
enter(1,97,1).

counterfact(remove,qobj(0)).
feature(qobj(0),large).
feature(qobj(0),cyan).
feature(qobj(0),circle).

option(1, qobj(1), enter, qobj(2)).
feature(qobj(1),small).feature(qobj(1),purple).feature(qobj

(1),triangle).
feature(qobj(2),large).feature(qobj(2),black).feature(qobj

(2),basket).

The background knowledge about moving dynamics is
encoded in ‘causal.lp’ which is the one presented in
Section 4. The full ASP program is given in Appendix E.
The answer set of input.lp + causal.lp is:

sim(2,0), determined(1, yes), answer(1,yes), ...

The answer set contains the fact answer(1,yes),
meaning that the answer to the query “Will the tiny pur-
ple triangle end up in the basket if the large cyan circle is
removed?” is yes, which is the correct answer.

C.3. GPT-x with CRCG guided prompt

For GPT-x with CRCG guided prompt, when CRCG de-
rives determined(Q,R) for a counterfactual question Q,
the prompt for GPT-x is replaced with the following percep-
tion question.

Instructions: A description of a scene of moving objects
and their physical dynamics is presented. A question
is then asked about the scene description.

Description: Start. Large cyan circle collides with small
yellow circle. Small purple triangle enters basket.
Large cyan circle collides with small yellow circle.
Small purple triangle collides with basket. End.

According to the scene description, did the tiny purple
triangle end up in the basket? (yes or no)

The GPT-x responds “Yes,” which is correct.

D. Other Enhancements to Neuro-Symbolic
Models for CLEVRER Tasks

D.1. Improved Object Detection (IOD)

For the descriptive and explanatory questions in the
CLEVRER dataset, it is important to recognize the events in
the video correctly. To help improve the accuracy of the de-
tected results by the perception modelMp, we implement
a simple method called IOD (Improved Object Detection).

IOD is a post-processor for the perception model Mp

to reduce its output noise and errors through two functions:
trajectory smoothing and topmost as center. The input to
IOD is the object trajectories output from the perception
modelMp. Since there are missing trajectories of objects at
some frames due to occlusion and errors, trajectory smooth-
ing draws a virtual line to connect the trajectories and uses
interpolation for the frames an object is missing. Trajectory
smoothing is applied to both NS-DR and VRDP, yielding
better accuracy on all question types.

In the case of NS-DR, the Mask-RCNN outputs the mask
of each object, and PropNet uses the center of the mask as
the object’s position. However, this method has a defect be-
cause occlusion could make the center of the mask move
abruptly, leading to wrong answers for questions like how
many objects are moving. To address this issue, the IOD
module for NS-DR also applies topmost as center, which
uses an object’s topmost point (instead of center) to trace
its trajectory as the topmost position is less likely to be oc-
cluded.

D.2. Simple Physics Simulator (SPS)

To better detect collisions, we introduce a Simple
Physics Simulator (SPS) with two functions. The first is to
predict the linear trajectory of each object after some frame.
The second is collision detection.

Linear Trajectory Predictions Using several kinematic
equations, the simulated object trajectory is computed. Es-
timations for the coefficient of friction and direction of mo-
tion for each object are computed from the perception re-
sults from Mp with or without IOD. This information is
later used in equations to calculate the linear distance trav-
eled and positions of each object o in each frame after o is
removed from Op (i.e., the set of objects whose perception
states can be used at the moment) in step 6 of Algorithm 1.

From the visual perception module in Figure 1, we know
x and y coordinates of objects in each video frame. We
denote the position of an object to have the form of a vector
x = xı̂+ yȷ̂. ı̂ and ȷ̂ are unit vectors representing the x and
y direction. We can compute the approximate velocity of an
object in some frame up to the end of the video as:

vi+t = (xi+t − xi)ı̂+ (yi+t − yi)ȷ̂

where i + t ≤ maxv; maxv is the last frame in the video
and is 127 as CLEVRER videos contain 127 frames; vi rep-
resents the approximate velocity of this object in frame i; t
is the temporal resolution, that is, the number of frames be-
tween every two consecutive positional information for x
(or y). In general, the higher the temporal resolution, the
less accurate the simulation. For NS-DR, since the position
of each object is available every 5 frames in the perception
results, we set t = 5. When using IOD or VRDP, t = 1,
since positional information is available for every frame.

The magnitude of the velocity of an object with friction
over time is modeled with the following equation:

|vi+t| = |vi| − gσt

where | · | denotes the vector norm, σ is the coefficient of
friction, and g is the gravitational constant. We use the last
two perception data (i.e., the two perception states for each
object at frames i and i+t) and solve for gσ for each object.
With the frictional term gσ and the velocity vi of each ob-
ject, we can approximate the magnitude of velocity |vi+t|
at frames before the object comes to a stop. Furthermore,
we can approximate the distance traveled by an object in t
frames with:

∆xi = |vi| · t
Finally, we get the simulated trajectory of all objects by
splitting up the distance traveled into the x and y compo-
nents. Figure 7 shows an example simulated trajectory in
the 2D space. Note that all objects need to be simulated
either from the frame identified by a sim node (e.g., the yel-
low object in Figure 7) or from frame maxv (e.g., the red
object in Figure 7).
Collision Detection To detect a collision, we check the
distance of each object relative to every other object at each
time frame. If they are within some threshold, then we de-
tect a collision. The threshold we use is 23.0 units, learned
from the validation set.

Figure 7. Simple Physics Simulator (SPS) output for the ques-
tion “Without the green cylinder, what will happen?” The colored
lines are in-video trajectories detected by the perception model
Mp with IOD. The gray dashed lines are the full counterfactual
trajectories computed by SPS without the green object. The yel-
low object hits the green object in the video, but SPS simulates
the yellow object’s physics trajectory from frame 46, just before
this collision would happen, according to the sim(0,46) fact
present in the answer set.

D.3. Achieving SOTA for the CLEVRER Challenge
The IOD module serves as a post-processor of a percep-

tion model to improve its perception accuracy, thus is appli-
cable to all question types. The SPS module is only appli-
cable to predictive and counterfactual questions.

Descriptive and Explanatory Question Answering
Table 6 shows the improvements due to IOD on the

54,990 descriptive questions in the validation set. NS-DR
achieves 88.02% accuracy for descriptive questions, and
with IOD, which makes the prediction to adhere to physical
constraints, the accuracy is improved to 95.46%. VRDP’s
93.79% accuracy is improved to 96.64% with IOD.

Table 6. Ablation study on descriptive questions in the validation
set. (IOD: improved object detection)

Model Per Ques.(%)

NS-DR 88.02
VRDP 93.79
NS-DR + IOD 95.46
VRDP + IOD 96.64

Explanatory questions ask about the cause of an event
(collision or object exiting) that happens in the video, so
like descriptive questions, they do not require physics simu-
lation. We apply the same enhancement IOD. Table 7 shows
the result of each enhancement on the 8,488 explanatory
questions and 30,697 options in the validation set. Over-
all, we achieve 99.68% question accuracy over baseline NS-
DR’s 79.31%.

The improvements we made for descriptive and explana-
tory questions are relatively simple. However, it is also
worth noting that such simple improvements achieve near
100% accuracy. Such is not the case with end-to-end mod-
els.

Predictive Query Answering Recall that predictive ques-

Table 7. Ablation study on explanatory questions in the validation
set. (IOD: improved object detection)

Model Per Opt.(%) Per Ques.(%)

NS-DR 87.19 79.31
NS-DR + IOD 99.90 99.68
VRDP 92.98 89.00
VRDP + IOD 99.28 98.82

Table 8. Ablation study on predictive questions in the validation
set. (IOD: Improved object detection, SPS: Simple Physics Simu-
lator)

Model Per Opt.(%) Per Ques.(%)

NS-DR 83.68 70.03
NS-DR + SPS 86.91 76.61
NS-DR + IOD + SPS 89.50 79.34
VRDP 95.88 91.90
VRDP + SPS 96.43 92.94
VRDP + IOD + SPS 95.83 91.82

tions are about collision events after the video ends. When
NS-DR evaluates predictive questions, the symbolic execu-
tor calls the functional module unseen events, which returns
the post-video collision events that PropNet generates. It
then checks if any of these predicted collision events match
one of the collision options in the question. Like counter-
factual QA, it is essential to use a simulation to predict the
movement, but we observe that the PropNet prediction is the
primary source of errors in the validation set, and the errors
are overwhelmingly false negatives (≈ 89.06%). We find
that VRDP also has a high false negative rate of 91.8% (269
out of 293 errors in the validation set) though the errors are
significantly less than NS-DR.

To alleviate the false negative issue, we use the simple
physics simulator (SPS) (Section D.2) that computes ob-
jects’ linear trajectories and collision events using physics
equations. The inputs to SPS are the trajectories and colli-
sion events generated from the IOD module (Section D.1).
These additional collision events found by SPS are ap-
pended to the set of post-video collision events predicted
in the baseline. Finally, the answer is computed by the pro-
gram executor with the functional programs generated from
the baseline question parser.

Table 8 shows the results of applying IOD and/or SPS
on the baselines NS-DR and VRDP for the 3,557 predic-
tive questions and 7,114 options in the validation set. Start-
ing from NS-DR, our best enhancements yield an additional
9.31% question accuracy and, starting from VRDP, an addi-
tional 1.04% question accuracy. Adding only the SPS mod-
ule to the baseline shows a noticeable improvement because
the module could find a significant number of missing pre-
dictions.

Counterfactual Query Answering NS-DR and VRDP
address counterfactual questions by the simulation to pre-
dict collision events when some object is removed. For
the simulator, NS-DR uses PropNet and VRDP uses an
impulse-based differentiable rigid-body simulator. As with
predictive questions, the physics simulation often makes
mistakes. For NS-DR baseline, out of the total 7,337 er-
rors in the validation options, we find that 3,050 (41.57%)
of them are false positives (i.e., the collision in the option is
incorrectly predicted in the set of collision events produced
by PropNet) and 4,287 (58.43%) are false negatives (i.e.,
the collision in the choice should be predicted by PropNet
but not). VRDP performs much better, with 1756 total er-
rors, where 49.1% are false positives and 50.9% are false
negatives.

Table 9 shows an ablation study on different modules,
including our main method CRCG and two simple modules
IOD and SPS, on the 9,333 counterfactual questions and
33,051 choices in the validation set.

For NS-DR, we applied CRCGapprox to directly en-
hance the predictions of NS-DR, which we denote by
CRCGapprox

NSDR. We also applied IOD and SPS to improve
the accuracy of the perception states and the simulated
states. Table 9 shows that each enhancement could im-
prove the baseline NS-DR’s performance and the best ac-
curacy, 91.49% per option and 75.39% per question, is
achieved when all enhancements are applied. Consider the
best combination, i.e., row (e) in Table 9, where we use
CRCGapprox

NSDR with IOD and SPS. Among 33,051 question-
option pairs in the validation dataset, the results for 20,234
are determined by CRCGapprox with an accuracy of
97.07%. For the remaining 12,817 question-option pairs,
the prediction is the same as NS-DR enhanced with IOD
and SPS and the accuracy is 82.75%.

For VRDP, we applied CRCG using the perception
model and the simulation model in VRDP, which we
denote by CRCGV RDP . For comparison, we also ap-
plied CRCGapprox to directly enhance the predictions of
VRDP, which we denote by CRCGapprox

V RDP . Table 9 shows
that, while CRCGapprox could improve the accuracy of
the predictions from VRDP, the accuracy can be further
improved with CRCG, which models the influence from
other simulated objects with the frame-by-frame simula-
tion in Algorithm 1. Consider row (h) in Table 9 where
CRCGapprox is applied to VRDP. Among 33,051 question-
option pairs in the validation dataset, the results for 20,776
are determined by CRCGapprox with an accuracy of
97.38%. For the remaining 12,275 question-option pairs,
the prediction is the same as the baseline VRDP and the ac-
curacy is 94.10%. (The number of determined question-
option pairs is slightly different for NS-DR and VRDP be-
cause they use different perception modelMp to detect ob-
jects O and in-video collisions C.)

Note that when the answer is determined the accuracy is

Table 9. Ablation study on counterfactual questions in the valida-
tion set. The components are (1) NSDR, (2) VRDP, (3) causal rea-
soning with ASP (CRCG), (4) Improved object detection (IOD),
and (5) the simple physics module (SPS)

Model Opt.(%) Ques.(%)

(a) NS-DR 73.98 41.55
(b) NS-DR + IOD 75.99 43.05
(c) CRCGapprox

NSDR 86.22 64.59
(d) CRCGapprox

NSDR + IOD 88.95 70.78
(e) CRCGapprox

NSDR + IOD+ SPS 91.49 75.39
(f) VRDP 94.69 84.11
(h) CRCGapprox

V RDP 95.80 87.21
(i) CRCGV RDP 96.16 88.13

significantly better than when it is not because perception
result is being used and is more reliable. This is evidenced
by (a) vs. (c); (b) vs. (d); and (f) vs. (h). For the best re-
sults with each respective baseline, even when the answer is
not determined, we do not blindly apply simulation, which
yields the performance gain evidenced by (d) vs. (e) with
the use of SPS and (h) vs. (i) with the use of Algorithm 1 in
CRCGV RDP . The result justifies the model’s prioritization
of using perception results rather than the more error-prone
baseline counterfactual simulation.

E. ASP Programs
E.1. ASP Input Generation

The first step in CRCG in Figure 1 is to turn (i) ques-
tions and options extracted by the Question Parser and (ii)
object features and collision events extracted by the Visual
Perception module into ASP facts.

Figure 8. Conversion of a question and choices into ASP facts.

For instance, for the question “Without the green cylin-
der, what will happen?” and its four options in the
CLEVRER dataset, Figure 8 shows the conversion into ASP
facts, which is done by a Python script.

Figure 9 shows the conversion from IOD improved ob-
ject detection results (from the visual perception module)
into ASP facts. These ASP facts along with any post-video
collisions detected by the simulation module (without re-
moving any objects) make up the input.lp file in Ap-
pendix E.2. The post-video collisions as input are neces-

Figure 9. Conversion of improved object detection (video frame
parser) results into ASP facts.

sary because the counterfactual questions in the CLEVRER
dataset ask about hypothetical events that may happen dur-
ing the counterfactual simulation for the duration of the
video and some time after (we simulate/reason about up to
185 frames, 58 more than the video has).

E.2. The Full ASP Program for CRCG

Below we show the full ASP programs, including
“input.lp” and “causal.lp”, that realize our methods
in Sections 3.2 and 3.3. The ASP program “input.lp”
is constructed from video #147, question #15 in the val-
idation set of CLEVRER dataset. The ASP program
“causal.lp” is general and is applied to all examples.

E.2.1 input.lp

input.lp encodes the information from a question, its 4
choices, and the corresponding video.

color(0,yellow). material(0,rubber). shape(0,cylinder).
color(1,blue). material(1,metal). shape(1,cylinder).
color(2,green). material(2,rubber). shape(2,cylinder).
color(3,red). material(3,metal). shape(3,cylinder).
color(4,red). material(4,rubber). shape(4,sphere).

collision(0,1,16).
collision(0,2,46).
collision(3,0,155).

question(yes,green).question(yes,cylinder).

choice(1, 1, yellow).choice(1, 1, cylinder).
choice(1, 2, blue).

choice(2, 1, red).choice(2, 1, cylinder).
choice(2, 2, sphere).

choice(3, 1, yellow).
choice(3, 2, red).choice(3, 2, cylinder).

choice(4, 1, blue).choice(4, 1, cylinder).
choice(4, 2, sphere).

E.2.2 causal.lp

“causal.lp” encodes general knowledge about the
causal graph and related definitions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rules as interface to turn the atoms in input.lp into

more general forms
% * New atoms:
% counterfact(remove, qobj(I))
% option(OptionIdx, qobj(I1), Event, qobj(I2))
% feature(qobj(I), Feature)
% query(negated) --- which represents "the question is

asking about something not happening"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

counterfact(remove, qobj(0)).

option(C, qobj(C*10 + 1), collide, qobj(C*10 + 2)) :-
choice(C,_,_).

feature(qobj(0), Feature) :- question(_,Feature).
feature(qobj(C*10 + I), Feature) :- choice(C, I, Feature).

query(negated) :- question(no,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Supress warnings of "atom does not occur in any rule head

"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#defined size/2.
#defined enter/3.
#defined query/3.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Helper atoms
% * turn size/2, color/2, shape/2 into feature/3 and

feature/2
% * immovable/1 denotes "background" objects that will

never move
% * event/4 denotes the events in {collide, enter}
% * pos_result/1 denotes the possible result in {yes, no}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

feature(O, size, V) :- size(O, V).
feature(O, color, V) :- color(O, V).
feature(O, shape, V) :- shape(O, V).
feature(O, material, V) :- material(O, V).

feature(O, V) :- feature(O, _, V).

immovable(O) :- feature(O, shape, basket).
immovable(O) :- feature(O, shape, ground).

event(O1, collide, O2, Frame) :- collision(O1, O2, Frame).
event(O1, enter, O2, Frame) :- enter(O1, O2, Frame).

pos_result(yes; no).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rules for the causal graph
% * same/2 identify the objects in query with the objects

in video
% * removed/1 denotes the removed object(s)
% * timestamp/1 denotes the frames with event happening
% * ancestor/4 determines the ancestor relationships

between 2 collisions

% * affected/2 denotes which nodes in the graph are
affected by the removed object

% * sim/2 represents sim node, which denotes when to
start simulation for an object

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Each object in query should be the same as an object in
video

same(qobj(I), O) :- feature(O,_,_), feature(qobj(I),_),
feature(O,_,T): feature(qobj(I),T).

% Define removed object(s)

removed(O) :- counterfact(remove, qobj(I)), same(qobj(I), O
).

% Find all timestamps to be considered in the causal graph

timestamp(T) :- collision(_,_,T).
timestamp(T) :- enter(_,_,T).

% Collision is symmetric

collision(O2,O1,T) :- collision(O1,O2,T).

% The ancestor relation is introduced either by the same
object with different frames, or by a collision, or

ancestor(O,T1,O,T2) :- feature(O,_,_), timestamp(T1),
timestamp(T2), T1<T2, not immovable(O).

ancestor(O1,T,O2,T) :- collision(O1,O2,T), not immovable(O1
), not immovable(O2).

ancestor(O1,T1,O2,T2) :- ancestor(O1,T1,O3,T3), ancestor(O3
,T3,O2,T2), (O1,T1)!=(O2,T2).

% Find the nodes (i.e., object states) in the graph that
are affected

affected(O,T) :- removed(O), collision(_,_,T).
affected(O,T) :- removed(O’), ancestor(O’,T’,O,T).
% If we can remove "anything", every node that has an

ancestor is affected
affected(O,T) :- counterfact(remove, any), ancestor(O’,_,O,

T), O!=O’.

% Find the sim nodes in the graph

sim(O,T) :- not removed(O), affected(O,T), T<=T’: affected(
O,T’).

% The result is determined to be yes if the collision
happened in the video at a time when the states of o1
and o2 are not affected by the removed object.

determined(Q, yes) :- option(Q, qobj(I1), Event, qobj(I2)),
same(qobj(I1), O1), same(qobj(I2),O2),
event(O1, Event, O2, F),
not affected(O1,F), not affected(O2,F).

% The result is determined to be no if O1 or O2 is removed.

determined(Q, no) :- option(Q, qobj(I1), Event, qobj(I2)),
same(qobj(I1), O1), same(qobj(I2),O2),
removed(O1): not removed(O2).

% The result is determined to be no if the collision did
not happen in the video and the states of O1 and O2

are not affected by the removed objects.

determined(Q, no) :- option(Q, qobj(I1), Event, qobj(I2)),
same(qobj(I1), O1), same(qobj(I2),O2),
not event(O1, Event, O2, _),
not affected(O1,_), not affected(O2,_).

% we answer negated result if the query is asking about an
event not happening

answer(Idx, Ans) :- determined(Idx, Res),
pos_result(Res), pos_result(Ans),
Res = Ans: not query(negated);
Res != Ans: query(negated).

% we answer the count if the query is about counting events

answer(N) :- query(counting, Event, qobj(I)),
same(qobj(I), O),
N = #count{Ox: event(Ox,Event,O,_), not removed(Ox)},
not sim(Ox,_): feature(Ox,_,_).

% we answer tbd if no result is predicted

{answer(Idx, tbd)} :- option(Idx,_,_,_).
:- option(Idx,_,_,_), #count{Res: answer(Idx, Res)} = 0.
:- option(Idx,_,_,_), answer(Idx, tbd), #count{Res: answer(

Idx, Res)} > 1.

#show sim/2.
#show answer/2.

