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Supplementary Material

In this supplementary material, we provide more details
on LCVE with respect to the following points:

• The datasets we use in our experiments (Sec. A).
• The implementation details (Sec. B).
• Quantitative comparison of image encryption methods

and their temporal extensions (Sec. C).
• Visualization samples of LCVE (Sec. D).

A. Datasets
In our experiments, we use seven datasets to evaluate

privacy-preserving action recognition methods. Most ex-
isting methods are just evaluated on small-scale datasets,
and their effectiveness on large datasets with high diver-
sity remains unclear. However, our proposed method works
well on a variety of datasets including many types of action
classes, motions, and visual patterns. Herein, we provide an
overview of the datasets used in this study.
HMDB51 [11]: this dataset contains approximately 6k
video data collected from movies as well as YouTube. The
videos are annotated with 51 action classes, which con-
sist of five types of action: (i) general facial actions (e.g.
smile), (ii) facial actions with object manipulation (e.g. eat),
(iii) general body movements (e.g. jump), (iv) body move-
ments with object interaction (e.g. kick ball), (v) body
movements for human interaction (e.g. punch). HMDB51
is often used for evaluation of action recognition methods
in [4, 8, 17, 18, 24]
UCF-101 [20]: it contains about 13k videos with 101 action
classes. Action classes can be divided into five types: (i)
Human-Object Interaction (e.g. Juggling Balls), (ii) Body-
Motion Only (e.g. Push Ups), (iii) Human-Human Interac-
tion (e.g. Head Massage), (iv) Playing Musical Instruments
(e.g. Drumming), (v) Sports (e.g. Archery). UCF-101 is
also used to evaluate privacy-preserving action recognition
methods [4, 8, 24].
KTH Dataset [19]: this has more than 2k action sequences,
containing six human actions (walking, jogging, running,
boxing, hand waving, and hand clapping). In this dataset,
25 people perform each action with four types of patterns;

static homogeneous background, scale variations, differ-
ent clothes, and lighting variations. Therefore, we use the
25 actor identities for the privacy label prediction task, as
in [12]. Note that there are no details about how to split the
data into train/test sets in [12], so we use videos recorded
on the static homogeneous backgrounds as the test set.

IPN Hand Dataset [2]: it is a hand gesture dataset con-
taining more than 4k videos with 13 static and dynamic
hand gesture classes like ”Throw up” and ”Zoom in”. This
dataset is annotated with some metadata like gender, back-
ground, and so on. We use gender annotations for the pri-
vacy label prediction task as in [12].

Diving48 [13]: this is a competitive diving video dataset
for fine-grained action recognition, consisting of approxi-
mately 18k videos and 48 different classes of dives. This
dataset has a few noticeable biases for static representations.
Therefore, it is used to evaluate whether the action recogni-
tion model can capture motion information. There is no
existing privacy-preserving action recognition method that
conducts experiments on Diving48.

Something-Something V2 [6]: it contains more than 220k
videos. The videos are labeled with 174 action classes,
composed of primitive actions with everyday objects. In
this large dataset, action classes are defined as caption-
templates such as ”Moving something up” and ”Covering
something with something”. Therefore, to predict these
action classes, it is necessary for models to extract not
only visual features but also motion features from videos.
Something-Something V2 is not yet used in existing re-
search in privacy-preserving action recognition tasks.

Kinetics400 [10]: it consists of about 300k videos with
400 human action labels such as playing musical instru-
ments, shaking hands, or riding a bike. This is the largest
dataset used in our experiments. The videos were collected
from YouTube. The duration of each video clip is approxi-
mately 10 seconds. Kinetics400 is one of the most popular
benchmarks for the action recognition task, but most exist-
ing works do not use it for evaluating privacy-preserving
action recognition methods.



Table 1. Finetuning setting for each dataset.

configuration Kinetics400 Something-Something V2
UCF-101
Diving48

Other Datasets

optimizer AdamW [14]
learning rate 1e-3 5e-4 5e-4 1e-3
weight decay 0.05
optimizer momentum β1 = 0.9, β2 = 0.999
batch size 128
learning rate schedule cosine decay
warmup epochs 5
epochs 75 30 100 100
repeated augmentation [7] 2
flip augmentation ✓ - ✓ ✓
RandAug [3] (9, 0.5)
label smoothing [21] 0.1
mixup [28] 0.8
cutmix [27] 1.0
drop path [9] 0.1 0.1 0.2 0.2
dropout 0.0 0.0 0.5 0.5
layer-wise lr decay [1] 0.75
sampling dense sampling [5, 26] uniform sampling [25] dense sampling dense sampling

B. Implementation

In our implementation, we use the PyTorch [15] frame-
work. Our training and inference codes are based on the
VideoMAE implementation1. In our experiments, we fine-
tune VideoMAE with the ViT-Base backbone, which is pre-
trained on Kinetics400.

Details of the finetuning configuration for each dataset
are listed in Table 1. We use the same training and inference
schemes as in [23]. Therefore, our results should ideally be
the same as those reported by [23]. However, our results
are slightly worse. This may result from the differences in
the number of GPUs used and batch sizes.

C. Qualitative Comparison with Image En-
cryption Method.

In our experiments, we use the two image encryption
methods proposed in [16, 22]. LE [22] applies shuffling
pixels in each patch and reverses the intensities of the ran-
domly selected pixel positions. The latter process is called
a negative-positive transform. In contrast, the method pro-
posed by Qi et al. [16] executes shuffling patches and shuf-
fles the pixel positions in a sub-patch.

In addition to applying them frame by frame to videos,
we implement temporally extended versions of two meth-
ods by applying each process to a spatio-temporal cube. For
example, the temporally extended version of LE divides an
8-bit RGB video into spatio-temporal cubes and splits each
cube into the upper 4-bit and the lower 4-bit cubes, mak-

1https://github.com/MCG-NJU/VideoMAE

ing 6-channel video cubes. Then, it applies the negative-
positive transform and shuffles the pixels in each cube. A
temporally extended method proposed by Qi et al. divides a
video into cubes and shuffles them. Then, it splits each cube
into sub-cubes and randomly shuffles the pixel positions in
each sub-cube.

Figure 1 shows the qualitative comparison with LCVE
and the two image encryption methods [16, 22]. For this
visualization, we set the video size to 8 × 224 × 224. The
patch and cube sizes are set to 16 × 16 and 2 × 16 × 16,
respectively. Although the videos encrypted by the method
of Qi et al. retain color information, The LCVE video con-
tains little information for identifying the original video. LE
also can completely make videos visually unreadable, but
it is difficult for neural networks to recognize the action, as
demonstrated in our experiments. On the other hand, LCVE
videos can be recognized by ViT Scrambling in the same
manner as non-encrypted videos.

One of the weaknesses in our method is that LCVE gen-
erates cube artifacts, which may allow an attacker to guess
how the video is encrypted. In future work, we will focus
on developing encryption methods that do not produce such
artifacts.

D. Visualization

We show the LCVE visualization samples on HMDB51
(Figure 2), UCF-101 (Figure 3), KTH Dataset (Fig-
ure 4), IPN Hand Dataset (Figure 5), Diving48 (Figure 6),
Something-Something V2 (Figure 7), and Kinetics400 (Fig-
ure 8). In these visualizations, we adopt the same setting as



in Figure 1. As shown in these figures, LCVE can hide
private information from a variety of videos. Through our
experiments, we also demonstrate that it is difficult for neu-
ral networks to recognize content without ViT Scrambling.
Therefore, our proposed method strictly protects privacy.
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Figure 1. Comparison of visualization samples with other encryption methods.

𝑡

Original
Video

Cube
Shuffle

LCVE

Original
Video

Cube
Shuffle

LCVE

Figure 2. Visualization samples on HMDB51.
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Figure 3. Visualization samples on UCF-101.
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Figure 4. Visualization samples on KTH Dataset.
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Figure 5. Visualization samples on IPN Hand Dataset.
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Figure 6. Visualization samples on Diving48.
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Figure 7. Visualization samples on Something-Something V2.
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Figure 8. Visualization samples on Kinetics400.


