
Supplementary Material - Controlling Rate, Distortion, and Realism: Towards a
Single Comprehensive Neural Image Compression Model

A. Detailed Discriminator Architecture
We show the detailed architectures of each discriminator

design in Fig 1. We apply leaky ReLU after each convolu-
tion layer except in the final layer.

B. Algorithm of HRRGAN
Algorithm 1 shows the procedure for calculating the

HRRGAN loss function. In the algorithm, NIC, D, and
sg indicate the NIC model, discriminator, and stop-gradient
operation, respectively. As shown in Algorithm 1, we use
the original image x to calculate pr when q = Q−1 because
the NIC model cannot reconstruct an image with q = Q.

C. Model Size
Table 1 shows the number of parameters in our encoder

and generator. As described in Sec 3.1, we adopt the en-
coder and generator in ELIC [4] as a base architecture
and incorporate Interpolation Channel Attention (ICA) lay-
ers [6] and β-conditioning [2] to adjust rate and distortion-
realism trade-off, respectively. ICA layers are used in the
encoder and generator, while β-conditioning is used only in
the generator. As shown in Table 1, using these two mod-
ules results in an approximate parameter increase of 2.7M .
It demonstrates that our approach significantly saves model
storage costs compared to employing separate NIC models
optimized for distinct rates and distortion-realism balances.

D. Additional Results
D.1. Results on different realism weights

We show the quantitative results on different realism
weights β = {0, 1.28, 2.56, 3.84, 5.12} in Fig 2. These
results illustrate that different β results in different bal-
ances between distortion and realism. Specifically, smaller
β achieves high PSNR, indicating higher pixel-level fidelity.
On the other hand, larger β yields lower FID, indicating
high realism. Although β = 3.84 consistently surpasses
β = 5.12 in terms of PSNR, the difference in FID between
β = 3.84 and β = 5.12 is marginal. Based on this observa-
tion, we selected β = 3.84 as our high-realism mode in our
main experiments.

ICA β-cond Encoder Generator

Base 7.34M 10.72M

Ours w/o MR ✓
7.36M

(+0.019M)
10.74M

(+0.024M)

Ours full ✓ ✓
7.36M

(+0.019M)
13.38M

(+2.66M)

Table 1. Parameter counts for the encoder and generator across
various configurations. “ICA” stands for interpolation channel at-
tention [6], while “β-cond” refers to β-conditioning [2]. Base rep-
resents the encoder and decoder (generator) used in ELIC [4]. The
numbers in parentheses represent the increase in parameters com-
pared to Base.

D.2. LPIPS evaluation on CLIC2020 dataset

Fig 3 shows the results of LPIPS [8] on CLIC2020 dat-
set. Our high-realism mode (β = 3.84) matches the per-
formance of HiFiC [5] (single-rate model) and outperforms
DIRAC [3] (variable-rate model).

D.3. Detailed quantitative results

To facilitate direct comparisons in future studies, we
have compiled the quantitative results into Table 2.

D.4. Additional Qualitative Results

We show additional qualitative results in Fig 4,5,6. Since
Kodak reconstructions of Multi-Realism [2] are not publi-
cally available, we compare our reconstructions with only
HiFiC [5]. Overall, our reconstructions contain fewer ar-
tifacts than HiFiC [5] (e.g., the top figure in Fig 4), and
the visual quality of our method is competitive with Multi-
Realism [2].
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Figure 1. The detail of the discriminator architecture. Num-
bers within the convolution layers represent the kernel size, out-
put channel, and stride, respectively. For instance, ”Conv k3, 256,
s2” denotes a convolution layer with a kernel size of 3, an output
channel of 256, and a stride of 2. Each discriminator’s output di-
mensions are (H/16,W/16), where H and W are the height and
width of the image, respectively.

Algorithm 1 HRRGAN loss function

1: Input: Original image x
2: Uniformly sample realism weight β ∈ [0, βmax]
3: Uniformly sample quality level q ∈ {0, 1, · · · , Q− 1}
4: x̂q ← NIC(x, q, β)
5: if q < Q− 1 then
6: x̂q+1 ← NIC(x, q + 1, β)
7: pr ← sigmoid(D(x̂q)− sg(D(x̂q+1)))
8: else
9: pr ← sigmoid(D(x̂q)− sg(D(x)))

10: end if
11: pf ← sigmoid(D(x)−D(x̂q))
12: LG

HRRGAN ← − log pr
13: LD

HRRGAN ← − log pf
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Figure 2. Quantitative comparison of different input realism weights β on CLIC2020 test dataset. Ours w/o MR represents a baseline model
trained with fixed β = 2.56. These results demonstrate that our model effectively balances the distortion-realism trade-off by adjusting
input β.

LPIPS↓ (realism) [CLIC2020]

Figure 3. LPIPS [8] results on CLIC2020 test dataset.
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Figure 4. Qualitative comparison on CLIC2020 dataset.
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Figure 5. Qualitative comparison on CLIC2020 dataset. In Ours, non-integer q indicates that we interpolated the scaling vectors for fine
rate control as in [6].
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Figure 6. Qualitative comparison on Kodak dataset. In Ours, non-integer q indicates that we use interpolated channel attention [6] for fine
rate control.


