
CCMR: High Resolution Optical Flow Estimation via
Coarse-to-Fine Context-Guided Motion Reasoning

Supplementary Material

Azin Jahedi1 Maximilian Luz2 Marc Rivinius3 Andrés Bruhn1

1VIS, University of Stuttgart 2RLL, University of Freiburg 3SEC, University of Stuttgart
{azin.jahedi,andres.bruhn}@vis.uni-stuttgart.de

luz@cs.uni-freiburg.de, marc.rivinius@sec.uni-stuttgart.de

In the following, we provide additional details on our ap-
proach. Regarding the architecture, we further detail on the
improved feature consolidation unit and how it is embed-
ded in the whole feature extractor. We then show additional
pre-training generalization results, comparing our approach
to its baselines. After that we give additional details on the
memory advantages of our approach compared to a simple
coarse-to-fine GMA variant. We then describe the valida-
tion set on KITTI that we used for delineate the architec-
tural from the fine-tuning benefits. Afterwards, we provide
the inference settings of our approach and finally comment
on practical aspects such as memory requirements and run-
time.

I. Improved Feature Extraction
In Section 3 of the main paper, we gave a brief descrip-

tion of the U-Net style feature extractor1, and how the fea-
ture consolidation unit has been modified to increase its ex-
pressiveness and decrease its size. Let us now elaborate on
the whole multi-scale feature extractor with the improved
feature consolidation unit in more detail.

Fig. I shows the architecture of the modified encoder
for computing the image features. First, intermediate fea-
tures are computed in a top-down manner which are de-
noted by F̂2, F̂3 and F̂4. Then to obtain multi-scale fea-
tures, the better-structured finer features are semantically
enhanced by consolidating them with the deeper coarser-
scale features. To this end, bilinearly upsampled coarser
features Fs−1 and intermediate finer features F̂s are stacked
and passed through a Res-Conv unit for consolidation. As
the discussed in the paper, the Conv layer after the resid-
ual unit is activation-free. Note that two different encoders
with the shown architecture are used for computing image
and context features. While the one for the image features is
shared among the two input images, the one for the context
features has independent weights. Fig. 3 in the main paper

1which is based on MS-RAFT(+) [2, 3]

Image

Conv↓

ReLU

Res.4

Res.↓3

Res.↓2

Res.↓1

F̂2 Res. Conv.2 F2

F̂3 Res. Conv.3 F3

F̂4 Res. Conv.4 F4

Conv. F1

↑

↑

↑

1
16×(h,w)

1
8×(h,w)

1
4×(h,w)

1
2×(h,w)

Figure I. Our modified U-Net style feature extractor. Note that all
convs shown in the figure are activation free. The red highlighted
modules is our small but effective modification.

shows the feature consolidation unit for each of the features
Fs,1, Fs,2, Cs but only for one scale (scale s), unlike what
is illustrated in Fig. I which shows the feature computation
for different scales. Note that the each of the dashed boxes
in Fig. I corresponds to feature consolidation in Fig. 3 of the
main paper at a fixed scale s.

In the multi-scale estimation framework, to share the re-
current unit among all coarse-to-fine scales, the context fea-
tures must have a fixed number of channels across scales (as
they serve as input). In [2, 3], this was realized by a large
residual unit for consolidation to keep the output channels
256 at all scales. Using a leaner residual unit and converting
the number of channels to 256 using the subsequent conv
in the consolidation unit, our optical flow model became



Table I. Pre-training results. Results on Sintel (train) and KITTI
(train) after pre-training with Chairs and Things.

Sintel (train) KITTI (train)

Method Clean↓ Final↓ Fl↓

RAFT 1.43 2.71 17.4
GMA 1.30 2.74 17.1
DIP 1.30 2.82 13.73
KPA-flow 1.28 2.68 15.9
AnyFlow 1.17 2.58 13.01
MS-RAFT 1.13 2.60 -
MatchFlow_GMA 1.03 2.45 15.6
Flowformer++ 0.90 2.30 14.13
GMFlow+ 0.91 - -

GMA 1.36 2.74 17.51
MS-RAFT 1.18 2.58 13.84
MS-RAFT+ 1.03 2.52 13.83
CCMR (ours) 1.07 2.40 13.30
CCMR+ (ours) 0.98 2.36 12.84

28% smaller. Our leaner residual unit has two residual lay-
ers with less intermediate and output channels. Following
our ablation strategy from Sec. 4 of the main paper which
considers the 3-scale variant, our model with smaller resid-
ual unit yields pre-training generalization results of 1.07 for
Sintel Clean and 2.40 for Final, which is a bit worse than
1.05, obtained by the larger model for Clean and better than
its Final results: 2.49, respectively. Therefore the results of
the smaller model were favorable on average.

II. Pre-Training Generalization Results
In Section 4.2 of the main paper, we compared the pre-

training generalization results of our method to those of the
baselines and of recent methods; see main paper Tab. 2.
The results reported in the respective publications, based
on those methods using their own training schedules, are
listed again in the upper part of Tab. I. Additionally, in the
lower part of Tab. I, we now compare our results to the MS-
RAFT(+) and GMA baselines for which, this time, we ap-
plied the training schedule of our method, i.e. all methods
have exactly the same training scheme. Also in this case,
our CCMR(+) method outperforms the corresponding base-
lines, indicating that its improved pre-training generaliza-
tion performance is not due to the different training setting.

III. CCMR vs. Coarse-to-Fine GMA
In Section 3.4 of the main paper, we outlined the in-

feasibility of a simple coarse-to-fine version of GMA. We
demonstrated that even inference in such a network needs
an enormous amounts of VRAM. In the following we add
upon this by elaborating on the memory requirements to
train such a network. Considering patch sizes used by
RAFT’s [5] training setting, the minimum and maximum

200 300 400 500 600 700
Image Height = Image Width (Pixels)

0
20
40
60
80

100
120
140
160
180

GP
U 

M
em

or
y 

Us
ag

e 
(G

B)

CCMR (Training)
CCMR (Inference)
GMA_CtF (Training)
GMA_CtF (Inference)

Figure II. Comparison of memory consumption for our approach
and the direct extension of GMA to multiple scales3. X-axis shows
height or width of squared input images.

size are 368 × 496 ≈ 4272 and 400 × 720 ≈ 5362, used
in the first and second training stages, respectively. These
patch sizes were also used for training GMA [4] and our
CCMR approach. Now let us take a look at the memory
consumption for training a single sample (batch of one)
shown in Fig. II. Considering the intersections of the solid
orange line with the purple (patch size ≈ 4272) and red line
(patch size of ≈ 5362) shows that the coarse-to-fine version
of GMA requires from 75 to about 180 GBs of VRAM. This
means: training this network using GMA’s training setting2

requires 8×75 = 600 GBs and about 6×180 = 1080 GBs
for training the first stage on Chairs and second stage on
Things, respectively, while our approach requires more than
an order of magnitude less VRAM for training the second
phase using the same patch size and batch size. In fact our
approach needs at most 94 GBs which we distribute over
three Nvidia A100 GPUs, each having 40 GBs of VRAM.
Note that in the measurements shown in Fig. II, the match-
ing costs were computed on demand, without the computa-
tion of the all-pairs cost volume, therefore the consumed
memory is not due to computing or keeping the 4D all-
pairs cost volume in the VRAM, but for different partially
attention-based coarse-to-fine calculations.

Of course, when the memory requirements become crit-
ical, using smaller patches for training can be taken into
account. However, since using larger patches for training
provides more content for the network, reducing the patch
size drastically during training is not advisable [1].

2GMA uses a batch of 8 samples for the first training phase and a batch
size of 6 for the other training phases.

3Note that, for GMA_CtF, we ran samples for inference and training
for patch sizes which required memory up to the memory limit of our
GPU—about 40 GBs (≈ 3522 for training and 5442 for inference). In
this case, the memory consumption for larger patches was extrapolated us-
ing a quadratic function.



IV. Validation Set for KITTI 2015
In Section 4.2 of the main paper, we delineated the ar-

chitectural impact from the fine-tuning impact on KITTI.
To this end we split KITTI 2015 (train) into a training and
a validation set. The validation set contained the follow-
ing 50 sequences: #0-#29, #60-#69 and #110-#119 and the
train-split consists of the remaining 150 samples. Using a
fine-tuned version on such a split did not only allow us to
compare the different baseline in a fair manner, but also to
find effective number of iterations during inference.

V. Inference Settings
Similar to RAFT [5] and and many of its successors,

such as GMA [4], we used different inference settings for
the different benchmarks, however, as mentioned in the
paper, we used one unified architecture4 for each 3-scale
and 4-scale variant for different pre-training and fine-tuning
stages.

To compute the flow on the Sintel benchmark, we ap-
plied a cold warm-strategy as in MS-RAFT+ [2], using 8
GRU iterations at the coarsest scale and 10 at other scales.
For KITTI, 35 iterations at the two coarsest scales, 5 and
15 iterations at the next finer scales are performed, respec-
tively, for the 4-scale model. These iteration numbers were
found empirically on the training set of Sintel for models
pre-trained on Chairs and Things, and for KITTI on the
KITTI validation split after fine-tuning the model on the
training-split previously described in Sec. IV. In the case
of our 3-scale model, we used 10, 15 and 20 GRU iterations
for Sintel and 6, 18 and 30 iterations for KITTI from the
coarsest to the finest scale, respectively.

Importantly, the optimal number of iterations for the best
performance highly depends on the model. Therefore, we
investigated different combinations of GRU iterations per
scale for both our method and our baselines and reported
the best results in the lower part of Tab. I. In the same way,
we performed our comparison to the baselines for the fine-
tuned models on the KITTI validation split in Tab. 3 of the
main paper. Therefore our clear advantage over the base-
lines is independent of the training or inference settings.
In our investigation, we found that in the case of KITTI,
our model benefits from more GRU iterations than MS-
RAFT(+), where MS-RAFT+ results degrades in accuracy
using more than 10 GRU iterations per-scale while the accu-
racy of our method kept increasing. In the case of GMA, the
accuracy barely changed by increasing the GRU iterations.

VI. Memory Requirements and Runtime
Estimating the flow using our 4-scale model on Sintel-

size images (436 × 1024) takes about 0.9 seconds using
4which was suggested by our ablations: last two rows in Tab. 5 in the

main paper.

8, 10, 10 and 10 GRU iterations from the coarsest to the
finest scale, respectively. This estimation requires 4.5 GBs
of VRAM. Note that, in this setting, the matching costs are
computed on-demand for each iteration. Analogously, es-
timating the flow using our 3-scale model takes 0.55 sec-
onds and requires 3.1 GBs of VRAM when performing 10,
15 and 20 GRU iterations from the coarsest to finest scale,
respectively. Note that, in this case, as the finest matching
scale of the 3-scale model is at 1

4 (h,w) instead of at 1
2 (h,w)

in the 4-scale model, the computation of the all-pair cost
volume is rather affordable. When doing so, the runtime re-
duces to 0.43 seconds, while the amount of required VRAM
increases to 12.5 GB.

References
[1] A. Bar-Haim and L. Wolf. ScopeFlow: dynamic scene scop-

ing for optical flow. In CVPR, pages 7995–8004, 2020. 2
[2] A. Jahedi, M. Luz, L. Mehl, M. Rivinius, and A. Bruhn. High

resolution multi-scale RAFT (ECCV Robust Vision Challenge
2022). arXiv:2210.16900, 2022. 1, 3

[3] A. Jahedi, L. Mehl, M. Rivinius, and A. Bruhn. Multi-Scale
RAFT: Combining hierarchical concepts for learning-based
optical flow estimation. In ICIP, pages 1236–1240, 2022. 1

[4] S. Jiang, D. Campbell, Y. Lu, H. Li, and R. Hartley. Learning
to estimate hidden motions with global motion aggregation.
In ICCV, pages 9772–9781, 2021. 2, 3

[5] Z. Teed and J. Deng. RAFT: Recurrent all-pairs field trans-
forms for optical flow. In ECCV, pages 402–419, 2020. 2,
3


