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The structure of the supplementary material is as fol-
lows:

• Sec. 1: Notations

• Sec. 2: Additional experimental details

– Sec. 2.1: Datasets split details

– Sec. 2.2: Evaluation metric

– Sec. 2.3: Hyperparameters details

• Sec. 3: Additional results

– Sec. 3.1: Hyperparameters sensitivity analysis

– Sec. 3.2: Results on different seeds

– Sec. 3.3: Importance of selection criterion in
consistency regularization via DDC

1. Notations
Table 1 offers a concise overview of the notations uti-

lized in the paper.

2. Additional experimental details
2.1. Dataset split details

The experiments were conducted in accordance with the
dataset splits provided in the prior works [1, 5]. Let C de-
notes common label set between the domains, while Cs and
Ct denotes the source private and target private label sets
respectively.

In the context of the open-set domain adaptation (ODA)
scenario, the dataset splits are given as follows: (1)
Office-31: The ten common classes between Office-31 and
Caltech-256 [2] are chosen as common label set (C) and the
selected 11 classes (“tape dispenser”, “ring binder”, “sta-
pler”, “printer”, “punchers”, “scissors”, “ruler”, “speaker”,
“phone”, “pen” and “trash can”) are chosen as target private
label set (Ct). (2) OfficeHome: The initial 25 classes in
alphabetical order are selected as the common label set (C),
while the remaining 40 classes constitute the target’s private
label set (Ct). (3) VisDA: The first six classes are selected
as common label set (C), and the remaining six classes are
assigned to target private label set (Ct).

Table 1. Table of notations

Symbol Description

N
et

w
or

k F Feature extractor

D Adversarial domain discriminator

SBN Stochastic binary network

D
at

as
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s/
L
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el
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ts

Ds Source labeled dataset

Dt Target unlabeled dataset

D̄t Strongly augmented target unlabeled dataset

Cs Source label set

Ct Target label set

C Common label set

Cs Source private label set

Ct Target private label set

L
os

se
s/

fa
ct

or
s

Lova One-vs-all loss

Lent Entropy minimization loss

Ladv Weighted adversarial learning loss

Lcons Consistency regularization loss

λ1 Entropy minimization scaling factor

λ2 Weighted adversarial learning scaling factor

λ3 Consistency regularization scaling factor

Sa
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es

/F
ea
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is
ce
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ne

ou
s

(xs
i , y

s
i ) i-th labeled source sample

xt
i i-th unlabeled target sample

fs
i Feature of i-th source sample

ft
i Feature of i-th target sample

f̄t
i Feature of i-th strongly augmented target sample

csi Confidence score of i-th source sample

cti Confidence score of i-th target sample

P t Collective predicted probability outputs for target data

Qt Collective generated auxiliary distributions for target data

m Number of sampled stochastic classifiers

A Strong augmentation

α Weak augmentation

N (µ,Σ) Multivariate Gaussian distribution

µ Learnable mean vector

Σ Learnable diagonal covariance matrix

τ Confidence threshold
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Figure 1. Hyperparameters sensitivity analysis on the Office-31 dataset under the open-set domain adaptation (ODA) scenario. (a) Effect
of changing the entropy minimization scaling factor (λ1). (b) Effect of changing the weighted adversarial learning scaling factor (λ2). (c)
Effect of changing the consistency regularization scaling factor (λ3).

In the context of the universal domain adaptation
(UniDA) scenario, the dataset splits are given as follows:
(1) Office-31: The ten common classes between Office-
31 and Caltech-256 [2] are chosen as a common label set
(C). The subsequent ten classes, listed alphabetically, com-
pose the source private label set (Cs), while the remaining
11 classes constitute the target private label set (Ct). (2)
OfficeHome:. The initial ten classes in alphabetical order
constitute the common label set (C). The subsequent five
classes form the source private label set (Cs), and the re-
maining classes are designated as the target private label
set (Ct). (3) VisDA: The first six classes are assigned to
the common label set (C), and the subsequent three classes
are included in the source private label set (Cs). All other
classes are allocated to the target private label set (Ct).

2.2. Evaluation metric

Following prior works [1, 5, 6], we evaluate our method
using H-score. H-score is the harmonic mean of accuracy
on known classes (acck) and accuracy on unknown classes
(accu), and it can be written as:

H-score =
2acck · accu
acck + accu

(1)

The H-score metric will be high when both known and un-
known accuracies are high.

2.3. Hyperparameters details

Following previous works [1,5,6], we use ResNet50 [3]
pretrained on ImageNet as our feature extractor. Following
[6], we set batch size as 36 and train the model for 10,000
iterations using Nesterov momentum SGD with momentum
of 0.9 and weight decay of 5×10−4. The initial learning rate
is set as 0.01, which decays with the factor of

(
1 + γ i

N

)−p
,

where i denotes the current iteration and N denotes the
global iteration, and we set γ = 10 and p = 0.75. For
the scaling factors, we empirically set the value of λ1 and
λ2 as 0.5 and 0.1, respectively, for all datasets. The value

of λ3 is set to 0.05 for Office-31 and OfficeHome, while for
the large-scale VisDA dataset, the value of λ3 is set to 0.1
because of the presence of more fragmented distributions.

3. Additional results

3.1. Hyperparameters sensitivity analysis

To demonstrate the sensitivity of STUN to variations in
the scaling factors (λ1, λ2 and λ3), we conducted exper-
iments on the Office-31 dataset using the ODA (open-set
Domain Adaptation) setting.

Fig. 1a shows the sensitivity analysis on entropy mini-
mization scaling factor (λ1) across a broad range from 0.3
to 0.9. The performance of STUN demonstrates minimal
fluctuations, underscoring the robust nature of STUN to the
value of λ1.

Likewise, in Fig. 1b and Fig. 1c, we delve into the per-
formance analysis of STUN on changing the values of two
essential scaling factors: the weighted adversarial learning
scaling factor (λ2) and the consistency regularization scal-
ing factor (λ3). This examination spans a comprehensive
range, from 0.01 to 0.2, demonstrating that our method is
less sensitive and shows the stable performance for differ-
ent choices of λ2 and λ3.

3.2. Results on different seeds

In Table 2, we examine the stability of our framework by
reporting the averaged H-score along with the standard de-
viation after running the experiment three times with differ-
ent random seeds for the Office-31 dataset under both ODA
and UniDA settings. Our results indicate that the standard
deviation values remain near zero across various adaptation
tasks under both ODA and UniDA settings, demonstrating
our framework STUN’s reliability.



Table 2. Averaged H-score (%) and standard deviation (%) based on the three runs of our framework STUN for the Office-31 dataset under
both ODA and UniDA scenarios.

Setting A2W A2D W2A W2D D2A D2W Avg
ODA (10/0/11) 88.3 ± 0.4 88.2 ± 0.1 89.6 ± 0.7 99.2 ± 0.3 90.5 ± 0.4 96.4 ± 0.2 92.0 ± 0.1

UniDA (10/10/11) 83.9 ±0.9 89.5 ± 0.5 89.0 ± 0.3 95.8 ± 0.4 86.1 ± 0.2 94.7 ± 0.2 89.8 ± 0.2

Table 3. Studying the importance of selection criterion in consistency regularization via deep discriminative clustering (DDC) using Office-
31 and VisDA dataset under UniDA scenario. STUN* represents STUN without any selection criterion in consistency regularization.

Method
Office31 (10/10/11) VisDA

A2W A2D W2A W2D D2A D2W Avg (6/3/3)

STUN* 80.9 89.4 82.5 95.6 71.1 94.1 85.6 52.2

STUN 83.9 89.5 89.0 95.8 86.1 94.7 89.8 68.3

3.3. Importance of selection criterion in consistency
regularization via DDC

We introduce the selection criterion (i.e. I [cti ≥ τ ]) in
consistency regularization via deep discriminative cluster-
ing (DDC) to exclude the target private samples in loss
calculation because of their potential label inconsistency in
neighboring data [4]. We have verified its effectiveness by
removing it from the Eq. (8) of the main paper. As can be
seen from Table 3, it causes a performance drop across all
adaptation scenarios. This decline is especially prominent
in challenging adaptation scenarios such as W2A and D2A
within the Office31 and large-scale VisDA datasets. These
findings demonstrate the significance of the selection cri-
terion within consistency regularization and again validate
the capability of our robust confidence scores in efficiently
separating common class samples from private class sam-
ples.
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