
Supplementary: Robust Unsupervised Domain Adaptation through
Negative-View Regularization

Figure 1. A pseudo-code of pos aug. For brevity, most arguments
are omitted.

A. Methodology
A.1. Proposed negative augmentation-based loss

function: Pseudo-code of pos aug

As mentioned in our paper, we make use of a compo-
sition of positive augmentations in [1] which attests to the
significance of the composition in contrastive learning, and
it is available on PyTorch-based SimCLR repository1. A
pseudo-code of pos aug can be found in Figure 1

B. New dataset: Retail-71
B.1. Details: Collecting target-domain samples

To build target-domain dataset, we utilized a shelf with
6 slots (i.e., 2 rows and 3 columns) filled with products, and
three FHD webcams for multi top view system. The we-
bcams are 2.7 meters high from the floor, and look down
vertically on the shelf. Furthermore, they are connected to a
single desktop which receives a series of FHD frames from
the webcams, and the frames go through a detection model,
YOLOv5m2. Figure 2 shows the camera system we uti-
lized. Notably, when a person grabs a product with his/her
hand, the appearance of the product is shown in the FHD
frames, and the detection model detects the position and

1PyTorch-based SimCLR
2A repository of YOLOv5

Figure 2. A camera system to acquire target-domain samples.

Figure 3. Some examples of target-domain samples.

size of the product, cropping out the product. All the crops
of the detected products are automatically saved in the desk-
top. Some examples are exhibited in Figure 3. Note that the

1

https://github.com/sthalles/SimCLR/blob/master/data_aug/contrastive_learning_dataset.py
https://github.com/ultralytics/yolov5


person is standing still with the product for a few seconds,
moves his/her hands slowly and carefully looks around the
product for the next few seconds to collect the easy-case
images. After that, the person partially occludes the prod-
uct with his/her hands or strongly shakes it with various
strengths so that the cases of severe hand occlusion and hard
motion blur are provoked. In this way, we assembled about
1000 images for each product.

620 images per class are randomly sampled and used as
target-domain samples for training. The remaining samples,
300-400 samples for each class, are treated as materials for
building test sets. We manually select 50 easy-difficulty
samples (i.e., relatively clean images), 50 hard-difficulty
samples (i.e., images showing harsh motion blur), and 50
medium-difficulty samples (i.e., images exhibiting moder-
ate level of motion blur) for each class. Note that the dif-
ficulty of test set is chiefly at the mercy of the degree of
motion blur, and the detail criterion can be seen in Subsec-
tion B.3.

As a result, the target-domain dataset for training broods
total 44,020 samples, and the test set possesses 150 im-
ages per class, thus total 10,650 samples. Technically, the
test set is composed with three subsets: the easy-difficulty,
medium-difficulty, and hard-difficulty test set, and each
subset contains total 3,550 samples (i.e., 50 samples for
each product). The specific criteria for each difficulty can
be found in supplementary.

B.2. Training detection model used to collect target-
domain samples

As mentioned in preceding paragraph, we utilize
YOLOv5m as a detection model. The role of YOLOv5m
is to crop out the product images, regardless of the class of
product. We collected the data samples to train the detec-
tion model by using the multi top view webcams (Figure 2).
To be more specific, one or two persons stand in front of a
shelf and catch one or two products with their hands. The
persons shake the products, varying the strength. During
shaking, the webcams transmit FHD frames of the scene to
the desktop, and the frames are saved in the desktop. After
that, we labeled all the saved FHD frames in YOLO format,
using a tool labelImg3 (Refer to Figure 4. Note that only
a single class of object (i.e., product) is used when label-
ing the frames. As a result, we constructed a training set
and validation set which consist of 4,801 and 2,845 frames,
respectively. Finally, we trained a YOLOv5m, employing
the repository of YOLOv5, and the resultant YOLOv5m
achieved mAP 50

V al = 0.9875 and mAP 50−95
V al = 0.7168.

The YOLOv5m is used as our product detector.

3A repository of labelImg

Figure 4. An example of labeling with a tool labelImg.

B.3. Details: Criterion for each difficulty in test set

The difficulty of test set is primarily determined depend-
ing on the degree of motion blur which is a main factor af-
fecting the features of product images. Although hand oc-
clusion is one of the principal factors, the networks trained
with UDA methods typically have trouble predicting the
class of images which contain severe motion blur rather
than hand occlusion. It is because motion blur hurts the fea-
tures of products entirely even in the case of product images
in which the severity of hand occlusion is low, whereas hand
occlusion partially occludes the features of product image.
For each difficulty of test set, We complied with the follow-
ing guidelines when collecting the test samples.

Easy difficulty. It requires the clean images without mo-
tion blur. Even if motion blur appears in images, the hardly
blurry images are also allowed. Importantly, the texts or
pictures printed in the products have to be recognizable to
some extent.

Medium difficulty. The images are so blurry that the texts
and pictures printed in the products are unrecognizable.
Furthermore, there are some additional acceptable cases in
which the edge of product is blurry but its form is vaguely
recognizable.

Hard difficulty. The hard-difficulty cases ought to be the
images in which the products are extremely blurry to the
extent that the shape of products is unrecognizable and dis-
torted. Some examples of each difficulty are shown in Fig-
ure 5.

C. Details: Rule-based synthesis: Building an
intermediate domain of Retail-71

As mentioned in our paper, the domain discrepancy be-
tween source and target domain in Retail-71 results from
the myriad of factors, principally hand occlusion and mo-
tion blur. Additionally, the images on source domain typ-

https://github.com/HumanSignal/labelImg


(a) Easy difficulty.

(b) Medium difficulty.

(c) Hard difficulty.

Figure 5. The examples of test images. Each row shows identical
difficulty, and the images in each column are from the same class.

Figure 6. Examples of hand images mined from Ego2Hands [5].

ically show lower resolution than the ones on target do-
main because the devices used to build each domain are
different each other, causing device noise. We propose a
rule-based synthesis (RS) for further smooth domain align-
ment on Retail-71 through building an intermediate domain.
The synthesis is applied to source-domain images, and no
ground-truth labels are required. Note that there are a vari-
ety level of motion blur and hand occlusion in target-domain
samples, hence we vary the degree of RS when applying
the rule-based synthesis to source-domain samples. Techni-
cally, we construct three intermediate-domain datasets (i.e.,
easy difficulty (E), medium difficulty (M), and hard diffi-
culty (H)) from an original source-domain dataset (O). For

the medium-difficulty intermediate-domain dataset, we also
apply zero padding, and the resultant intermediate dataset
is denoted as MP. Some examples are shown in Figure
8. There are four factors in RS: (1) hand attachment, (2)
putting on motion blur, (3) applying a certain level of noise,
and (4) zero padding. The following paragraphs deal with
the factors.

Hand attachment. It needs Plenty of hand images to
manufacture the images of hand-occluded products from
source-domain samples. We designated Ego2Hands [5] as
the source of hand images. It provides about 180k hand im-
ages, each of which has a format of RGBA. In the fourth
channel (i.e., channel A), 1 and 0 mean full opacity and
transparency, respectively, which helps to separate hand in
each image from the background in aids of automated algo-
rithm. Following to removing backgrounds, we manually
sampled 392 hands with various appearance, filtering the
similar hands as shown in Figure 6.

After that, the certain number of hands are sam-
pled, resized, rotated, and attached to source-domain sam-
ples. Concretely, for each source-domain sample, the
certain number of hands have to be prepared. The de-
fault size of each hand crop is determined based on the
length of the longer side of product image. For in-
stance, if the height of the product image (product height)
is longer than the product width, the hand crop is re-
sized with its hand heighttarget = product height ×
0.75, hand widthtarget = hand heighttarget × hand width

hand height .
However, if hand widthtarget > product width, the
target hand height and target hand width are recal-
culated: hand widthtarget = product width × 1.2,
hand heighttarget = hand widthtarget × hand height

hand width . Impor-
tantly, to vary the hand size, we introduce a factor ’size rate’
and multiply it to hand widthtarget and hand heighttarget.
The same rule is applied in the case that the product width
is longer than the product height, except for switching be-
tween height and weight.

Next, each hand crop resized with hand widthtarget and
hand heighttarget is attached to the product image. Before
attachment, the product image goes through zero padding,
where 10% of product height is padded to the top and bot-
tom of product image, and 10% of product width is padded
to the left and right side of product image. For example,
if the product image has a size of H = 100 and W = 50,
the top and bottom side is respectively zero-padded with the
thickness 10, and the left and right side is respectively zero-
padded with the thickness 5, resulting in the padded product
image with a size of Hpad = 120 and Wpad = 60. After
padding, each hand crop is attached to the padded product
image, and the position to which the hands are attached is
randomly determined. Before finishing the step of attach-
ment, the padded area of the padded product image is cut



Figure 7. Pseudo-code for applying motion blur to image.

off, regaining the size of the original product image.
Note that there are two factors enabling to adjust the level

of difficulty in hand attachment: size rate and the number
of hands.

Putting on motion blur. The next step of hand attach-
ment is to put on motion blur. To implement motion blur,
we make use of simple kernel and convolutional operation
(Refer to Figure 7). Greater size the kernel has, more blurry
image are generated. Hence, the kernel size gives the free-
dom to control the degree of motion blur.

Applying noise. Following putting on motion blur, we ap-
ply little noise to source-domain images to imitate the de-
vice noise from webcams which are used to collect target-
domain samples. Technically, we employ White Gaussian
Noise (WGN), and adjust the degree of noise by changing
its standard deviation value.

The setting of factors. Given an original source-domain
dataset (O) of Retail-71, we apply hand attachment, motion
blur, and noise to generate intermediate-domain datasets.
As aforementioned, there are three difficulties: E, M, and
H. For easy difficulty (E), the number of hands is randomly
determined between 1 and 2, and size rate is randomly sam-
pled from a uniform distribution (min=0.5, max=0.9) for
each hand crop. When it comes to motion blur, kernel size
is set as 0 or sampled from a range of integer (min=5,
max=14). The standard deviation of WGN is 5. In the case
of medium difficulty (M), the number of hands is randomly
determined between 2 and 3, and size rate is randomly sam-
pled from a uniform distribution (min=0.9, max=1.1) for
each hand crop. The value of kernel size is randomly sam-
pled from either a range of integer (min=5, max=14) or a
range of integer (min=25, max=39). The standard deviation
of WGN is 5. Lastly, for hard difficulty (H), the number of

Figure 8. The rule-based synthesis on Retail-71. The goal of
the synthesis is to build intermediate domains which have lower
domain gap with target domain. We build four domains: E, M,
MP, and H. When a neural network is learned by UDA method on
Retail-71, the intermediate domains can be utilized by replacing
the source-domain training set with the combination of source-
domain and intermediate-domain dataset (e.g. replace O with
O+E+M).

hands is randomly sampled from a range of integer (min=4,
max=7), and size rate is randomly selected from a uniform
distribution (min=1.1, max=1.5) for each hand crop. The
kernel size value is randomly sampled from either a range
of integer (min=25, max=39) or a range of integer (min=70,
max=79). The standard deviation of WGN is 10.

Zero padding. Lastly, when it comes to middle-difficulty
images (i.e., M in Figure 8), we zero-pad them to center-
align the image pixels and preserve the aspect ratio of orig-
inal image against resizing which is included in data pre-
processing in dataloader. Notably, the edge of products in
many target-domain samples have a margin with the edge of
image (see Figure 3), while the edge of products in source-
domain ones has no margin with and even amputated by the
edge of image (see (O) in Figure 8). That is why we ap-
ply zero padding to middle-difficulty intermediate-domain
samples. Concretely, denoting the size of product image as
(Height,Width) = (H,W ), we firstly make the image to
the form of square with zero-padding, and then resize the
image to (0.9H, 0.9W ). Finally, we zero-pad the resized
image and make it having the size (H,W ). For example,
for the product image with size (80, 100), we zero-pad the
top and bottom side of the image with thickness=10, mak-
ing the image size to (100, 100). After that, the image is
resized to the size of (90, 90), and zero padding is applied
to the top, bottom, left, and right side with thickness of 5.
The size of the resultant image is (100, 100). MP in Figure
8 displays an example.



D. Experimental results

D.1. Details: Datasets

Office-31 [11]. It contains 31 classes of office supplies
and three domains: DSLR (D), Webcam (W), and Amazon
(A). DSLR and Webcam have 498 and 795 samples, respec-
tively, while Amazon is composed of 2,817 samples. There
are total 3× 2 = 6 adaptation scenarios in Office-31.

Office-Home [12]. It has 65 classes and total four do-
mains: Art (Ar), Clipart (Cl), Product (Pr), and Real World
(Rw). The smallest domain Ar consists of 2,427 samples,
while Cl, Pr, and Rw contain a similar number of samples:
4,365, 4,439, and 4,357 images, respectively. The total
number of scenarios is 4× 3 = 12.

VisDA-2017 [7]. Unlike aforementioned two datasets,
there are only two domains which are Real and Synthetic,
and only one scenario (i.e., Synthetic → Real). Real and
Synthetic domain possess 152,397 and 55,388 samples, re-
spectively. In addition, the per-class evaluation is per-
formed, and the final accuracy is determined as the average
of all per-class accuracies.

Retail-71. It has two domains and one adaptation sce-
nario. The number of classes is 71, and there are 10,650
and 44,020 samples in source and target domain, respec-
tively. On Retail-71, we report five accuracies: a validation
accuracy, three test accuracy values for the three difficulties
(i.e., easy-difficulty, medium-difficulty, and hard-difficulty
accuracy), and a final test accuracy.

D.2. Details: Experimental settings

Backbone. We predominantly exploit ViT-Base except
for Retail-71 on which ViT-Small and ViT-Tiny are used.
Note that we report UDA performance of both ViT-Small
and ViT-Tiny on Retail-71.

Resources. We used 3 NVIDIA TITAN RTX GPUs, each
of which has a RAM size of 23.65GB. Specifically, train-
ing one ViT-Base requires 3 GPUs, while one ViT-Small
and one ViT-Tiny only need two GPUs and a single GPU,
respectively.

Baseline method. We appoint SDAT [9], one of the state-
of-the-art (SOTA) methods, as a baseline method. In SDAT,
MCC [4] is attached over CDAN [6], and a smoothness en-
hancing loss based on [2] is utilized. The batch size is set
to 96 rather than 24 or 32 so that each minibatch reflects
the distribution of dataset. The learning rate value is 0.007,

0.01, 0.002, and 0.015 on Office-31, Office-Home, VisDA-
2017, and Retail-71, respectively. When it comes to other
training hyperparameters, we follow the original ones [9].

Hyperparameter of our regularizer loss. We attach our
negative augmentation-based regularizer to the baseline
SDAT. In first, when it comes to the negative augmenta-
tion, we basically use P-Shuffle with patch size 32 and im-
age size 224, as mentioned in Methodology section. Next,
there are two coefficients in our regularizer function, which
are a trade-off coefficient α and a temperature τ . The value
of α is 0.5 except for Office-31 on which 0.9 is used. As
for the value of β, Office-31 and VisDA-2017 use 0.7 and
0.1, respectively, while it is 0.5 on both Office-Home and
Retail-71.

D.3. Details: Evaluation on Retail-71 with Rule-
based Synthesis

Focusing on Rule-based Synthesis (RS), we report eval-
uation results in Table 1. We introduced RS into origi-
nal source-domain samples (O) and generated intermediate-
domain samples (E, M, MP, and H), varying the degree of
RS. After that, we made diverse combinations of source and
intermediate samples and introduced them into our experi-
ments by replacing original source-domain dataset with the
combinations. For ViT-Small, it causes its best test accuracy
95.9% to mix O with E and MP, while a mixture of O and
M shows the best performance 94.5% for ViT-Tiny. Inter-
estingly, usage of H exhibits relatively small performance
boost or even degradation. It is because the hard-difficulty
RS which makes H uses more and bigger hand images, and
leads to excessive hand occlusion, overly hiding and injur-
ing the features of products in images (See the example of
H in Figure 8). That is, utilizing the images (i.e., H) with
the features overly destroyed may confuse and disrupt the
neural network, which leads to small performance boost or
degradation.

D.4. Ablation study

The hyperparameters of our regularizer loss NVC spec-
ified in Subsection D.2 are empirically determined, and we
show the results of the parameter study on some datasets in
this Subsection. Interestingly, the immoderate values of α
sometimes give rise to mode collapse, especially in Table 6
and 8. Our NVC regularizer pushes original target-domain
samples and their positive views from all the negative views,
technically causes original samples and negative views push
each other away in a contrastive manner. Importantly, orig-
inal samples may also be pushed out of negative samples.
Hence, bigger α increases the gradient signal from NVC
loss, and the increased gradient possibly disturbs the distri-
bution of target samples (i.e., devastates the clusters in the
distribution), leading to mode collapse.



Method Backbone Val. Easy Test Medium Test Hard Test Avg. Test

Source Only

V
iT

-S
m
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l

49.0 72.4 43.5 18.7 44.9
Source Only+RS (O+E+MP) 55.8 77.4 52.1 27.5 52.3
SDAT† 95.2 97.7 95.7 87.5 93.7
SDAT†+RS (O+E+MP) 96.0 98.6 96.6 89.4 94.9
SDAT†+Ours 96.0 98.6 96.5 88.3 94.4
SDAT†+Ours+RS (O+E) 95.9 98.5 96.3 89.1 94.6
SDAT†+Ours+RS (O+M) 96.3 98.7 97.0 90.1 95.2
SDAT†+Ours+RS (O+MP) 96.4 98.7 96.7 89.9 95.1
SDAT†+Ours+RS (O+H) 94.7 98.3 95.9 86.0 93.4
SDAT†+Ours+RS (O+E+M) 97.0 99.1 97.6 90.4 95.7
SDAT†+Ours+RS (O+E+MP) 97.0 99.1 97.5 90.9 95.9
SDAT†+Ours+RS (O+E+H) 95.4 98.5 96.4 88.0 94.3
SDAT†+Ours+RS (O+E+M+H) 95.5 98.6 96.2 87.5 94.1
SDAT†+Ours+RS (O+E+MP+H) 95.7 98.4 96.6 87.8 94.3
SDAT†+Ours+RS (O+E+M+MP+H) 95.6 98.5 96.5 88.5 94.5

Source Only

V
iT

-T
in

y

41.3 58.9 37.3 19.0 38.4
Source Only+RS (O+M) 48.2 67.1 45.5 25.7 46.1
SDAT† 93.4 95.8 93.7 83.2 90.9
SDAT†+RS (O+M) 95.1 98.4 95.9 86.4 93.6
SDAT†+Ours 94.8 97.8 95.2 85.2 92.7
SDAT†+Ours+RS (O+E) 94.2 97.6 95.1 85.3 92.7
SDAT†+Ours+RS (O+M) 95.8 99.1 96.8 87.7 94.5
SDAT†+Ours+RS (O+MP) 95.6 98.9 96.8 87.6 94.5
SDAT†+Ours+RS (O+H) 94.8 98.8 96.3 85.4 93.5
SDAT†+Ours+RS (O+E+M) 95.9 99.1 96.7 87.0 94.3
SDAT†+Ours+RS (O+E+MP) 95.5 98.9 96.7 86.9 94.2
SDAT†+Ours+RS (O+E+H) 95.1 99.0 96.4 86.4 93.9
SDAT†+Ours+RS (O+E+M+MP) 95.4 98.7 96.6 86.4 93.9
SDAT†+Ours+RS (O+E+M+H) 95.3 99.0 96.4 86.2 93.9
SDAT†+Ours+RS (O+E+M+MP+H) 95.2 99.1 96.6 86.4 94.0

Table 1. Accuracy (%) details on Retail-71 for UDA. We used a variety of combination of source-domain dataset (O) and intermediate-
domain datasets (E, M, MP, and H). As mentioned in paper, there are various levels of motion blur and hand occlusion in target samples, and
thus to imitate it, we vary the degree of RS (see Figure 8 when building intermediate domains. The characters in each parenthesis denote
the composition of source dataset and intermediate datasets, e.g. ‘O+E+MP’ means that the mixture of O, E, and MP. The composition
plays the role of source-domain dataset in training. The composition ‘O+E+MP’ and ‘O+M’ result in the best performance of ViT-Small
and ViT-Tiny, respectively, and they are reported in paper as representative performances on Retail-71. The identical compositions leading
to best performances (‘O+E+MP’ for ViT-Small and ‘O+M’ for ViT-Tiny) are also used to SDAT† and Source Only. † indicates that it is
reproduced with batch size 96.

α 0.0 0.1 0.3 0.5 0.7 0.9 1.0 1.5

SDAT†+Ours 84.9 85.2 85.4 85.4 85.3 85.6 85.1 84.7

Table 2. Parameter study of the trade-off coefficient α with ViT-
Base on a scenario W→A of Office-31. Note that the case of
α = 0.0 is identical to vanilla SDAT. The batch size is 96, and
the temperature τ is fixed to 0.7.

D.5. Average Negative Confidence Score

In our paper, we analyzed our trained neural networks
based on not only Negative Accuracy but also Average Neg-

τ 0.1 0.3 0.5 0.7 0.9 1.0 1.5 2.0

SDAT†+Ours 81.7 84.1 84.7 85.6 85.1 85.1 85.2 85.3

Table 3. Parameter study of the temperature τ with ViT-Base on a
scenario W→A of Office-31. The batch size is 96, and the trade-
off coefficient α is fixed to 0.9.

ative Confidence Score. In this subsection, we give a sup-
plementary explanation of Average Negative Confidence
Score. As displayed in our paper, the definition of Aver-
age Negative Confidence Score is in Equation 1, in which
⊮ is an indicator function which has a value 1 only when



α 0.0 0.1 0.3 0.5 0.7 0.9 1.0 1.5

SDAT†+Ours 74.1 74.8 74.5 75.1 72.8 71.8 70.4 63.5

Table 4. Parameter study of the trade-off coefficient α with ViT-
Base on a scenario Ar→Cl of Office-Home. Note that the case of
α = 0.0 is identical to vanilla SDAT. The batch size is 96, and the
temperature τ is fixed to 0.5.

τ 0.1 0.3 0.5 0.7 0.9 1.0 1.5 2.0

SDAT†+Ours 70.9 71.9 75.1 74.7 74.0 74.7 74.7 74.3

Table 5. Parameter study of the temperature τ with ViT-Base on
a scenario Ar→Cl of Office-Home. The batch size is 96, and the
trade-off coefficient α is fixed to 0.5.

α 0.0 0.1 0.3 0.5 0.7 0.9 1.0 1.5

SDAT†+Ours 95.2 95.6 95.8 96.0 30.7 5.7 3.7 2.2

Table 6. Parameter study of the trade-off coefficient α with ViT-
Small on Retail-71. We report the validation accuracy. Note that
the case of α = 0.0 is identical to vanilla SDAT. The batch size is
96, and the temperature τ is fixed to 0.5.

τ 0.1 0.3 0.5 0.7 0.9 1.0 1.5 2.0

SDAT†+Ours 5.0 5.9 96.0 95.0 95.8 94.9 94.7 95.5

Table 7. Parameter study of the temperature τ with ViT-Small on
Retail-71. We report the validation accuracy. The batch size is 96,
and the trade-off coefficient α is fixed to 0.5.

α 0.0 0.1 0.3 0.5 0.7 0.9 1.0 1.5

SDAT†+Ours 93.4 94.5 94.8 94.8 94.4 93.6 93.1 39.2

Table 8. Parameter study of the trade-off coefficient α with ViT-
Tiny on Retail-71. We report the validation accuracy. Note that
the case of α = 0.0 is identical to vanilla SDAT. The batch size is
96, and the temperature τ is fixed to 0.5.

τ 0.1 0.3 0.5 0.7 0.9 1.0 1.5 2.0

SDAT†+Ours 92.7 94.3 94.8 94.7 94.6 94.5 94.4 94.5

Table 9. Parameter study of the temperature τ with ViT-Tiny on
Retail-71. We report the validation accuracy. The batch size is 96,
and the trade-off coefficient α is fixed to 0.5.

the equation in its parenthesis is hold, otherwise 0.

avg confneg =
1∣∣BTN
test

∣∣ ∑
xtn
i ∈BTN

test

C∑
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G(F (xtn
i ))c ⊮(c = yti)

=
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(1)

Given a labeled target-domain test set BT
test =

{(xt
i, y

t
i)}

Ntest
i=1 , all the negative views can be obtained

through BTN
test = {(xtn

i , yti)}
Ntest
i=1 = neg aug(BT

test).
When each negative view xtn

i is fed into neural network, the
confidence score corresponding to the class yti of xtn

i can be
obtained, and we term it as negative confidence score. Thus,
Average Negative Confidence Score avg confneg is calcu-
lated by averaging over all the negative confidence score.

Original target-domain samples have not only local fea-
tures but also global contexts, whereas negative views only
have local features. In ideal case, when processing original
samples, neural network such as ViT attends the global con-
texts and captures semantically meaningful features as well
as local features, yet the network fails to find the meaning-
ful features when digesting negative views lacking of global
contexts. In other words, given negative views, the network
ideally fail to recognize the class of each negative view,
making predictions in the form of uniform distribution (i.e.,
all the class confidence score is equal to 1/C). Therefore,
all the value of negative confidence score is ideally 1/C,
hence the ideal value of avg confneg is also 1/C. Note that
the higher avg confneg of a network implies more heavy
dependence of the neural network on local features.

D.6. Results of Negative Accuracy and Average Neg-
ative Confidence Score on various datasets

We only reported the result of Negative Accuracy and
Average Negative Confidence Score on Retail-71, and thus
we present the other results on different datasets in this sub-
section. The results are in Table 10, 11, 12, 13, 14, and
15. The baseline SDAT shows high value of both Negative
Accuracy and Average Negative Confidence Score, wherea
SDAT+Ours records the values relatively close to the ideal
values on Office-Home and VisDA-2017 as well as Retail-
71. It indicate that our NVC regularizer effectively instructs
the neural network to reduce its dependence on local fea-
tures.

Nevertheless, on Office-31, there is a tendency contrary
to the one on other datasets in that SDAT+Ours shows
higher values than the baseline SDAT. In first, we pay atten-
tion to the fact that Office-31 contains a smaller amount of
images than Office-Home, VisDA-2017, and Retail-71 (See
Subsection D.1). In second, referring to Section ’Bench-
mark evaluation’ in our paper, we note that ‘Source Only’



Method A−→D A−→W D−→A D−→W W−→A W−→D Avg.

SDAT† 79.7 77.6 64.5 79.9 63.7 83.5 74.8
SDAT†+Ours 96.6 91.2 78.5 87.5 63.6 92.0 84.9

Table 10. Negative Accuracy (%) of ViT-Base trained on Office-
31 for UDA. † indicates that it is reproduced with batch size 96. In
ideal case, the negative accuracy is the same as the accuracy of ran-
dom guess: 1/(# of classes) = 1/31 = 0.0323 = 3.23(%) [8].

accuracy values on Office-31 are higher than the ones on
other datasets, implying that Office-31 has less domain shift
than other datasets (i.e., more easier than other datasets).
Moreover, the smaller dataset has less image diversity than
the larger one, arousing overfitting, and we venture a guess
that on the smaller and easier dataset, it is closer the op-
tima to focus on some local patches of images rather than
to extract the contextual information. Consequently, we
speculate that our NVC loss makes ViT-based network fur-
ther concentrating to some local patches relatively helpful
and necessary to predict class rather than learning to catch
the contextual information, on Office-31, and it leads to
high Nagative Accuracy and Average Negative Confidence
Score.

D.7. Visualization: T-SNE on various datasets

We show more diverse T-SNE figures on various
datasets. For each dataset and backbone, We prepare four
models: ImageNet-pretrained model, a model trained only
with labeled source-domain dataset, a model learned by a
baseline SDAT, and a model trained with SDAT+Ours. That
is, we plot four T-SNE for each dataset and backbone. Fig-
ure 9, 10, 11, and 12 show all the results.

When it comes to ImageNet-pretrained ViT, it can differ-
entiate original target samples and their negative views to
some extent, and we infer that the pretrained ViT is trained
on ImageNet-1K [10] dataset, a large-scale dataset, in a su-
pervised manner, so that the ViT acquires an ability to cap-
ture the global contexts in images. For short, ImageNet-
pretrained ViT is able to extract the semantically meaning-
ful features in image because of a variety of training sam-
ples with supervision.

For Source Only, T-SNE shows the domain gap between
two domains, especially on Retail-71, and the distributions
of original target samples and negative views are aligned,
compared with T-SNE of ImageNet-pretrained models. We
speculate that it is attributed to catastrophic forgetting [3],
i.e. the model forgets its knowledge acquired from Ima-
geNet and loses its ability to capture the global context, with
learning on other datasets such as Retail-71.

In the case of SDAT, the figures of T-SNE show the al-
leviated domain gap between source and target domain, yet
the distribution of negative views still overlaps with the one
of target samples. It indicates the features from target sam-

ples are similar to the ones from negative views, and thus
the ViT heavily relies on the features from local patches
rather than on the relations between them.

On the other hand, the figures from SDAT+Ours show
that the distribution of negative views is almost completely
separated from the distribution of target samples. Thus, our
NVC loss successfully lowers the reliance on local features.
Even so, in Figure 12h, some negative views are attached
to the clusters even though negative views are differentiated
from target samples to some extent. As discussed in Sub-
section D.6, we suspect that our NVC loss rather prompts
the ViT to further focus on some helpful local patches of
images on the small and easy dataset, and only some im-
ages lacking of the helpful local patches are successfully
alienated from their corresponding negative views (See the
yellow island in the center of Figure 12h).



Method Ar−→Cl Ar−→Pr Ar−→Rw Cl−→Ar Cl−→Pr Cl−→Rw Pr−→Ar Pr−→Cl Pr−→Rw Rw−→Ar Rw−→Cl Rw−→Pr Avg.

SDAT† 32.1 62.4 64.8 47.3 50.7 54.8 41.1 29.8 63.9 49.0 28.9 66.0 49.2
SDAT†+Ours 6.6 10.8 9.0 8.7 6.8 8.1 3.1 4.9 6.0 3.4 6.6 47.4 10.1

Table 11. Negative Accuracy (%) of ViT-Base trained on Office-Home for UDA. † indicates that it is reproduced with batch size 96. In
ideal case, the negative accuracy is the same as the accuracy of random guess: 1/(# of classes) = 1/65 = 0.0154 = 1.54(%) [8].

Method Plane Bcycl Bus Car Horse Knife Mcyle Persn Plant Sktb Train Truck Mean

SDAT† 88.9 58.0 48.6 36.6 41.4 62.4 78.6 77.5 91.4 58.8 72.8 52.2 63.9
SDAT†+Ours 0.03 0.0 0.0 5.0 0.0 8.1 0.07 2.2 39.1 0.0 27.3 0.0 6.8

Table 12. Negative Accuracy (%) of ViT-Base trained on VisDA-2017 for UDA. † indicates that it is reproduced with batch size 96. In
ideal case, the negative accuracy is the same as the accuracy of random guess: 1/(# of classes) = 1/12 = 0.0833 = 8.33(%) [8].

Method A−→D A−→W D−→A D−→W W−→A W−→D Avg.

SDAT† 0.7582 0.7394 0.6433 0.5228 0.6294 0.4359 0.6215
SDAT†+Ours 0.9571 0.9038 0.7680 0.6629 0.5803 0.7094 0.7636

Table 13. Average Negative Confidence Score of ViT-Base trained
on Office-31 for UDA. † indicates that it is reproduced with batch
size 96. In ideal case, when the learned ViT receives negative
views, it predicts the uniform distribution which has its length
equal to the number of classes and in which each probability (i.e.,
confidence score) is 1/(# of classes) = 1/31 = 0.0323. Hence,
the average negative confidence score of ground-truth class is ide-
ally 1/(# of classes) = 1/31 = 0.0323.

D.8. Visualization: Additional figures of attention
map

In the paper, a few visualization results of attention map
are shown due to the page limit. Thus, we exhibit more re-
sults on Retail-71 and Office-Home in this section. In some
examples (Figure 13, 14, 15, 16, and 17, the cases of Ours
successfully attend to the object and take the semantically
meaningful, global features into the class predictions, un-
like the ones of SDAT. Meanwhile, referring to other exam-
ples (Figure 18, 19, and 20), both SDAT and Ours almost
similarily attend to the given object or SDAT even shows
more clear attention. Nevertheless, SDAT shows its incor-
rect predictions, whilst Ours correctly classifies the given
objects. It is because Ours relies on not only local features
but also the semantically meaningful features and the rela-
tions between local patches, unlike SDAT mainly focusing
on local features. In conclusion, the visualization results
show that our NVC loss leads the ViT to capture the global
contexts in images, boosting UDA performance.



(a) ImageNet-pretrained model. (b) ImageNet-pretrained model.

(c) Source Only. (d) Source Only.

(e) SDAT. (f) SDAT.

(g) SDAT+Ours. (h) SDAT+Ours.

Figure 9. T-SNE of ViT-Tiny pretrained on ImageNet-1k, ViT-Tiny trained only with source-domain samples, and ViT-Tiny learned by
SDAT and SDAT+Ours on Retail-71. Each color in (a), (c), (e), and (g) is corresponding to each class, while each color in (b), (d), (f),
and (h) indicates each domain. They also include the negative views of target-domain samples which are marked in yellow in (b), (d), (f),
and (h). The plot (e) and (f) exhibits that ViT learned by SDAT heavily depends on local features rather than global contexts in that the
distribution of negative views is similar to the one of original target samples. On the other hand, ours successfully captures the contextual
relations between local patches, pushing negative views away.



(a) ImageNet-pretrained model. (b) ImageNet-pretrained model.

(c) Source Only. (d) Source Only.

(e) SDAT. (f) SDAT.

(g) SDAT+Ours. (h) SDAT+Ours.

Figure 10. T-SNE of ViT-Small pretrained on ImageNet-1k, ViT-Small trained only with source-domain samples, and ViT-Small learned
by SDAT and SDAT+Ours on Retail-71.



(a) ImageNet-pretrained model. (b) ImageNet-pretrained model.

(c) Source Only. (d) Source Only.

(e) SDAT. (f) SDAT.

(g) SDAT+Ours. (h) SDAT+Ours.

Figure 11. T-SNE of ViT-Base pretrained on ImageNet-1k, ViT-Base trained only with source-domain samples, and ViT-Base learned by
SDAT and SDAT+Ours on ’Ar→Cl’ scenario of Office-Home.



(a) ImageNet-pretrained model. (b) ImageNet-pretrained model.

(c) Source Only. (d) Source Only.

(e) SDAT. (f) SDAT.

(g) SDAT+Ours. (h) SDAT+Ours.

Figure 12. T-SNE of ViT-Base pretrained on ImageNet-1k, ViT-Base trained only with source-domain samples, and ViT-Base learned by
SDAT and SDAT+Ours on ‘W→A’ scenario of Office-31.



Method Ar−→Cl Ar−→Pr Ar−→Rw Cl−→Ar Cl−→Pr Cl−→Rw Pr−→Ar Pr−→Cl Pr−→Rw Rw−→Ar Rw−→Cl Rw−→Pr Avg.

SDAT† 0.3044 0.6159 0.6374 0.4455 0.4875 0.5277 0.4014 0.2882 0.6252 0.4823 0.2834 0.6529 0.4793
SDAT†+Ours 0.0665 0.0966 0.0780 0.0763 0.0678 0.0716 0.0363 0.0514 0.0604 0.0404 0.0540 0.4649 0.0970

Table 14. Average Negative Confidence Score of ViT-Base trained on Office-Home for UDA. † indicates that it is reproduced with batch
size 96. In ideal case, when the learned ViT receives negative views, it predicts the uniform distribution which has its length equal to the
number of classes and in which each probability (i.e., confidence score) is 1/(# of classes) = 1/65 = 0.0154. Hence, the average negative
confidence score of ground-truth class is ideally 1/(# of classes) = 1/65 = 0.0154.

Method Mean Confidence Score

SDAT† 0.5977
SDAT†+Ours 0.0852

Table 15. Mean Negative Confidence Score of ViT-Base trained
on VisDA-2017 for UDA. † indicates that it is reproduced with
batch size 96. In ideal case, when the learned ViT receives nega-
tive views, it predicts the uniform distribution which has its length
equal to the number of classes and in which each probability (i.e.,
confidence score) is 1/(# of classes) = 1/12 = 0.0833. Hence,
the mean negative confidence score of ground-truth class is ideally
1/(# of classes) = 1/12 = 0.0833.

(a) Original Image
Ground Truth: 001

(Fresh Berry
Strawberry).

(b) SDAT (Incorrect)
Prediction: 004

(Pringles
Original).

(c) Ours (Correct)
Prediction: 001

(Fresh Berry
Strawberry).

Figure 13. Visualization of attention maps from ViT-Tiny learned
by SDAT and SDAT+Ours on Retail-71.

(a) Original Image
Ground Truth: 019

(Choco
pretzels).

(b) SDAT (Incorrect)
Prediction: 051

(Loacker
wehaseu vanilla).

(c) Ours (Correct)
Prediction: 019

(Choco
pretzels).

Figure 14. Visualization of attention maps from ViT-Tiny learned
by SDAT and SDAT+Ours on Retail-71.

(a) Original Image
Ground Truth: 016

(Lotte kkokkalcorn).

(b) SDAT (Incorrect)
Prediction: 011

(Noon-eul gamja).

(c) Ours (Correct)
Prediction: 016

(Lotte kkokkalcorn).

Figure 15. Visualization of attention maps from ViT-Tiny learned
by SDAT and SDAT+Ours on Retail-71.

(a) Original Image
Ground Truth: 016

(Lotte kkokkalcorn).

(b) SDAT (Incorrect)
Prediction: 011

(Noon-eul gamja).

(c) Ours (Correct)
Prediction: 016

(Lotte kkokkalcorn).

Figure 16. Visualization of attention maps from ViT-Tiny learned
by SDAT and SDAT+Ours on Retail-71.

(a) Original Image
Ground Truth:

Scissors.

(b) SDAT (Incorrect)
Prediction:

Knives.

(c) Ours (Correct)
Prediction:
Scissors.

Figure 17. Visualization of attention maps from ViT-Base learned
by SDAT and SDAT+Ours on a scenario Ar→Cl of Office-Home.



(a) Original Image
Ground Truth:

Calendar.

(b) SDAT (Incorrect)
Prediction:
Notebook.

(c) Ours (Correct)
Prediction:
Calendar.

Figure 18. Visualization of attention maps from ViT-Base learned
by SDAT and SDAT+Ours on a scenario Ar→Cl of Office-Home.

(a) Original Image
Ground Truth:

Marker.

(b) SDAT (Incorrect)
Prediction:

ToothBrush.

(c) Ours (Correct)
Prediction:

Marker.

Figure 19. Visualization of attention maps from ViT-Base learned
by SDAT and SDAT+Ours on a scenario Ar→Cl of Office-Home.

(a) Original Image
Ground Truth:

Hammer.

(b) SDAT (Incorrect)
Prediction:

Mop.

(c) Ours (Correct)
Prediction:
Hammer.

Figure 20. Visualization of attention maps from ViT-Base learned
by SDAT and SDAT+Ours on a scenario Ar→Cl of Office-Home.
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