
Appendix: Designing a Hybrid Neural System to Learn Real-world

Crack Segmentation from Fractal-based Simulation

In this supplementary material, we provide additional
details, experimental setup and descriptions for the various
parts of our proposed systems (Cracktal and CAP-Net), as
well as discuss additional results and highlight the limita-
tions of our approach. The structure is as follows:

A. Experimental setup and implementation details of the
Cracktal Simulator.

B. Additional training and design details of CAP-Net.

C. Additional results on in-distribution Cracktal data.

D. Further qualitative results on real world images.

E. Discussion of the limitations of our current approach
and possible future improvements.

A. Cracktal Details

In this section, we discuss some fundamentals of the
physics based workflow and the texture maps used in Crack-
tal. We also list the hyperparameters that have been used to
generate our specific Cracktal data set.

A.1. Rendering Maps and Crack Simulation Model

Figure 1. PBR Maps used to generate a concrete surface. Textures
were compressed to view in PDF. From left to right, top to bottom:
albedo, metallic, roughness, surface normal, height, and ambient
occlusion map.

PBR Maps: Physics-based rendering (PBR) is an approach
to rendering scenes that aims to accurately simulate the be-
havior of light in the real world. In PBR, materials are de-
fined by their physical properties, such as color (in the case
of dielectrics), roughness, and surface normals, which are
used to calculate how light interacts with the material. In
practice, PBR relies on a set of texture maps that define the
physical properties of each object in the scene (see Figure
1). These texture maps include:

• Color/albedo map: This texture map defines the base
color of the material for our case of the fully dielectric
concrete (or alternatively reflectance value for metals),
which represents the color that is observed under dif-
fuse lighting conditions.

• Metallic Map: This map defines the metallicity of a
material. Values range from non-metallic (zero val-
ues) to fully metallic (one values), and similarly to a
mask, define how to treat the above color map’s val-
ues in specific regions with respect to reflected color
or specularity.

• Roughness Map: This map defines the smoothness of
the material, with values ranging from very rough to
very smooth. Whereas the amount of reflected light is
always conserved, roughness determines diffuse scat-
tering. That is, the reflected direction becomes increas-
ingly random the rougher the surface.

• Normal Map: This map encodes the surface normals of
a material in RGB, defining which direction a surface
faces and thus affecting light and shadow calculations.
Normal maps are typically created by capturing fine
surface details through photogrammetry.

• Height map: This map is used to modify the surface
geometry. It defines the height variations of the sur-
face of an object in a grayscale map, where brighter
values represent higher elevations and darker values
represent lower ones. It is used in conjunction with
other material properties, such as roughness and sur-
face normal maps, to calculate how light interacts with
the surface of an object and providing a more realistic
“bumpmapped” look.

1

• Ambient Occlusion Map: This map defines the oc-
cluded areas on a surface, which are areas that receive
less light due to being blocked or shadowed by other
objects. AO maps help to add depth and realism to a
material by accentuating the small details and crevices
in a surface.

By using these texture maps in a PBR renderer, it is
possible to create highly realistic materials that look similar
to their real-world counterparts under different lighting
conditions. For more detailed information, we defer to
popular PBR guides, such as by Adobe’s Substance1.

Crack Model: As explained in the main body, the crack
model is implemented using an irregular fractal model. In
our experiments, the subdivision depth is set to 7. Further-
more, the width of the crack is obtained by generating a ran-
dom kernel size (3 or 5) for a Gaussian blur and applying it
to the crack map. Figure 2 illustrates the crack generation
process. The obtained crack is then added to the scene.

Figure 2. Crack Generation steps. A straight line is modified itera-
tively using the stochastic midpoint displacement algorithm. In the
final steps the crack is translated, rotated and width is then added
by applying a Gaussian blur filter.

A.2. Implementation Details

We generate our data using Blender Cycles PBR engine.
Our simulator code is written using Blender’s Python
API, which provides a comprehensive set of functions and
classes for interacting with the Cycles Engine. The code
was scripted in blender version 2.79 on a Linux OS. We
will open source the Cracktal code, the underlying textures,
as well as the generated data for training and validation.
With respect to surface alterations, the employed moss
textures were downloaded from textures.com 2 and the
graffiti textures from turbosquid.com 3.

1see https://substance3d.adobe.com/tutorials/
courses/the-pbr-guide-part-2 PBR Guide 2018

2https://www.textures.com/search?q=moss
3https://www.turbosquid.com/FullPreview/490921

Rendering Hyperparameters: We set the sampling factor
for the data generation to 20. When rendering an image,
the rendering engine sends out rays from the camera into
the scene and estimates the color of the first object that
each specific ray intersects with. To reduce aliasing and
noise, the renderer takes multiple samples per pixel and
averages the estimated colors to obtain a more accurate
representation of each pixel in the scene. Generally,
higher sampling rates lead to more accurate and realistic
results but also require more computational resources and
time. We chose a rendering tile size of 256 ⇥ 256 (for
parallelization) and a resolution of 2048 ⇥ 2048 for the
final image.

B. CAP-Net

In this section, we present further details and visualiza-
tion of the main modules in our proposed system, CAP-Net.
We also document our training and validation procedure.

B.1. Pointwise mutual information

The basic assumption underlying the choice of a point-
wise mutual information module as an inductive bias is that
the statistical association between pixels belonging to the
background texture is high, whereas for pixels belonging
to anomalies their statistical association with neighboring
pixels is low. We hypothesize that by leveraging these sta-
tistical associations between neighboring pixels for learn-
ing, we can achieve better generalization from simulated to
real images, which is empirically corroborated in the main
body. Figure 3 presents some visualization of the obtained
pixel wise affinity scores. Here we see that cracks and other
anomalies like surface holes, moss or graffiti edges are as-
signed lower scores.

Figure 3. Examples of the affinity maps obtained by the pointwise
mutual information module. Images are compressed for view in
PDF. Upper row shows the original images from Cracktal dataset
and the lower row is their corresponding affinity maps.

2

B.2. Adaptive Instance Normalization

Figure 4 visualizes some examples of images trans-
formed by the AdaIN module. We use a similar design to
that of the original AdaIn work [2]. The style transfer net-
work takes a content image c and an arbitrary style image s
as inputs, and synthesizes an output image that recombines
the content and the style. A simple encoder-decoder archi-
tecture is used, in which the encoder f is fixed to the first
four layers of VGG-19 pretrained on ImageNet. After en-
coding the content c and style s images to the latent feature
space, both feature maps are passed to an AdaIN layer that
aligns the mean and variance of the content feature map. A
randomly initialized decoder is trained to map the obtained
features to the image space, generating the stylized image.
The loss function of the decoder is computed as follows:

L = � · Ls + Lc (1)

which is a weighted combination of the content loss Lc

and the style loss Ls with the style loss weight �. The con-
tent loss term Lc is computed as the Euclidean distance be-
tween the target features and the features of the output im-
age. The style loss Ls is the Gram matrix loss between the
decoded image and the style image s.

We set the style weight � = 10000 and perform 1000
iteration steps to generate a stylized image. For each image
in our training set, we generate 5 stylized images and pick
randomly between them during training. As an optimizer
for the decoder, we use LBFGS [4]. As observable in figure
4, the background texture is changed to match the style of
the style image s, but the crack remains visible.

B.3. Implementation Details

In our experiments, we use a U-Net [6] architecture as
the backbone of our semantic segmentation network. The
encoders are implemented in PyTorch and trained for 30
epochs on two A100 Nvidia GPUs using Adam with an ini-
tial learning rate of 0.001 and weight decay of 0.0005, mini-
batch size 32. We train the models using synthetic concrete
images generated with our Cracktal simulator. We save the
model with the highest validation accuracy on a validation
set of synthetic images.

During training, we downsample the Cracktal images to
a resolution of 512 ⇥ 512 and then randomly crop a 256 ⇥
256 patch. We don’t perform any data augmentation during
training. The training set is composed of 8800 images, as
this amount seems to saturate performance (see section C).

For evaluation on SegCODEBRIM, we process and seg-
ment the original images with resolution 1500⇥ 844 patch-
wise. Each patch has a resolution of 512 ⇥ 512 and is then
downsampled to 256⇥ 256 to input to the neural network.

For the pointwise mutual information estimation, we
sample 10000 pixel pairs to perform the kernel density esti-
mation, which is a good computational trade-off given that

Figure 4. Adaptive Instance Normalization examples. Images are
compressed for view in PDF. From left to right: original, style, and
stylized images.

the input images have a 256⇥ 256 resolution. The distance
between two pixels in a pair is between 1 and 8 pixels. As
a kernel density estimator, we use gaussian KDE with au-
tomatic bandwidth estimation [7]. For each pixel, we es-
timate the affinity by calculating the PMI scores with its
neighbouring pixels in a radius of 5 from the origin. As a
hyperparamater for the PMI, we set ⌧ = 2.25.

C. Further Details for Evaluation Metrics

The authors of [8] introduce a similarity measure center-
lineDice (clDice), calculated by comparing the intersection
of the prediction and ground truth masks and their mor-
phological skeleta. Given two binary segmentation maps,
ground truth GT and prediction P , SGT and SP are the re-
spectively extracted skeletons. Subsequently, the fraction
of SX that lies within Y (Topology Precision), and vice-a-
versa (Topology Sensitivity):

Tprec(SP , GT) =
| SP \GT |

SP
(2)

Tsens(SGT , P) =
| SGT \ P |

SGT
(3)

These can then be used to define the clDice score:

clD(GT,P) = 2⇥ Tprec(SP , GT)⇥ Tsens(SGT , P)

Tprec(SP , GT) + Tsens(SGT , P)
(4)

3

D. Additional Results

For our experiments in the main body, we have used a
training set of 8800 synthetic images from the Cracktal sim-
ulator. Figure 5 illustrates the impact of training set size on
the performance for the baseline U-Net model. Here we ob-
serve that after a set size of 4000 images the performance
appears to stagnate on the F1 and clDice metrics. On the
HDFeuc, we observe an increase of almost 2 between set
size 4000 and 8800. It appears that our Cracktal simulator
generates a good variety of examples and that a training set
of around 8800 is reasonable.

As a complement, table 1 further highlights the test
set performance of different models on the in-distribution
Cracktal data. Here we observe that the baseline U-Net
slightly outperforms the other models on F1, F1✓=10,
HDFRBF . On the clDice and HDFEuc metrics, U-Net
also achieves the best mean value performance, but the ob-
tained values lie within statistical deviation when contrasted
with our CAP-Net design. As observed in the main body’s
results, the performance of U-Net drops more significantly
on out-of-distribution data (multi-source set and SegCODE-
BRIM) compared to our proposed model CAP-Net. This
shows that in-distribution performance is not predictive of
the performance on out-of-distribution data.

Furthermore, CAP-Net is more robust than the simple
fully data-driven U-Net. Figure 6 contains multiple qualita-
tive examples of the baseline U-Net and CAP-Net. Here it
is evident that our design choices improve the performance
overall and help detecting cracks that U-Net misses.

E. Limitations and Prospects

In this section, we highlight potential remaining chal-
lenges and areas of improvement in our approach.

Pointwise Mutual Information (PMI): The computed
PMI values depend on the chosen hyperparameters, such
as the image scale or neighborhood size. While some
solutions have been presented in the literature to address
some of these challenges, such as scale invariance [3],
these come with a substantial computational overhead. In
contrast, the simplified PMI estimation presented in this
work offers a good trade-off in terms of computational
efficiency, especially when deployed in conjunction with
neural networks. We also note that if the input image
consists of extensive amount of cracked surface, where
the cracked pattern itself forms a regular texture, PMI
will dampen the response for crack detection (which no
longer constitutes an anomaly). However, in real-world
applications, we are interested in early onset detection of
crack formation, before it’s too late and structural collapse
is imminent. Hence this situation is unlikely to be faced in
real-world practice.

Adaptive instance normalization (AdaIN): We made
use of textures from the Describable Textures dataset [1]
to perform the style transfer. One immediate prospect
for improvement lies in leveraging a concrete inspection
dataset, which could potentially offer a more diverse range
of textures that are even more relevant to the task at hand.

The challenge of crack scale: Another possible challenge
of our current system is the cracks’ scale. If the cracks
are too wide, our model has difficulty detecting it. This
is mainly because we only generated thin cracks in Crack-
tal. Again, this focus stems from the fact that inspectors
are mainly interested in the early formation of cracks in real
world scenarios. Wider cracks are usually found in concrete
surfaces where the inspectors are already aware that the sur-
face is damaged and were structures are severely damaged,
potentially beyond repair.

4

Model F1(") F1✓=10(") clDice(") HDFEuc(#) HDFRBF (#)

C
ra

ck
ta

l
U-Net [6] 75.3± 0.7 82.4± 0.2 88.2± 0.4 11.0± 0.9 15.3± 0.2
Attn-U-Net [5] 73.3± 0.6 81.4± 0.1 86.3± 0.7 13.6± 1.1 17.6± 0.7
Multi-U-Net (D-SN) 73.2± 1.1 81.4± 0.8 84.2± 1.5 13.6± 3.1 14.5± 2.7
Multi-U-Net (PMI) 72.8± 4.1 80.4± 3.1 83.2± 7.3 14.3± 5.2 18.5± 6.1
CAP-Net 72.2± 0.9 80.1± 0.4 86.9± 1.3 11.7± 1.5 17.6± 0.8

Table 1. Performance comparison of different models on a testset of Cracktal data.

Figure 5. Evolution of segmentation performance in terms of training set size for baseline U-Net on Cracktal testset. We visualize the
performance using different metrics. From left to right: F1, Hausdorff distance with euclidean measure, clDice.

References

[1] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A.
Vedaldi. Describing textures in the wild. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2014. 4

[2] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501–1510, 2017. 3

[3] Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H
Adelson. Crisp boundary detection using pointwise mutual
information. In European Conference on Computer Vision,
pages 799–814. Springer, 2014. 4

[4] Dong C Liu and Jorge Nocedal. On the limited memory bfgs
method for large scale optimization. Mathematical Program-
ming, 45(1-3):503–528, 1989. 3

[5] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee,
Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven
McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Atten-
tion u-net: Learning where to look for the pancreas. arXiv
preprint arXiv:1804.03999, 2018. 5

[6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-assisted Intervention, pages 234–241.
Springer, 2015. 3, 5

[7] David W Scott. Multivariate density estimation: theory, prac-
tice, and visualization. John Wiley & Sons, 2015. 3

[8] Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina,
Ivan Ezhov, Alexander Unger, Andrey Zhylka, Josien PW
Pluim, Ulrich Bauer, and Bjoern H Menze. cldice-a novel
topology-preserving loss function for tubular structure seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16560–
16569, 2021. 3

5

Figure 6. Qualitative examples on SegCODEBRIM from left to right: input image, ground-truth, U-Net, CAP-Net (ours). In general,
CAP-Net segments cracks that U-Net often misses entirely. Images are compressed for view in pdf.

6

