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Appendix A

Training scheme for USDN

We pre-trained the full-precision supernet and then fine-tuned it through quantization-aware training

(QAT). The network was trained for 300 epochs using an SGD optimizer with a weight decay of 1e-

4. The learning rate started at 0.1 and decreased using the cosine annealing learning rate scheduler.

When retraining the searched network, we trained a full-precision teacher network with CE loss.

Subsequently, we trained a USDN using Eq. (10). During this phase, the weight decay was changed

to 5e-4. The optimal temperature T was found to be 2, while α was set to 0.3. We applied an identical

training process for both datasets except for the batch size. For ImageNet, the batch size was set to

1024, and for CIFAR, the batch size was set to 64.

Appendix B

Training scheme for quantized EEnets

We trained a 4-bit quantized MSDnet [2] with a model configuration of block=5 and step=4. When

training the MSDnet, we loaded the full-precision pretrained weights from the GitHub repository

(https://github.com/kalviny/MSDNet-PyTorch) and subsequently fine-tuned them using QAT. Initially,

we followed the training scheme from [2], but it exhibited accuracy degradation. Consequently, we

applied the same training scheme that we used for training our USDN, as elaborated in the preceding

section.



In the case of SDN [3], we trained from scratch in full precision and then subsequently fine-tuned

it. Once again, we applied our training scheme instead of the one presented in [3] because ours

demonstrated better accuracy.

Appendix C

Exit Rate and computation cost of ICs

In this section, we present the exit rates and inference costs associated with each classifier, as

reported in Table 1 of the manuscript. The numerical results are provided in Tab. I. Exit rates and

inference costs vary based on the exit threshold. In the Tab. I, we display the results for the case

where the threshold is set to 0.7.

Appendix D

Effect of Level-wise Knowledge Distillation Training

In this section, we examine how the proposed knowledge-distillation (KD) training improves the

accuracy-BOPs trade-offs of the quantized early-exit network (EEnet). First, we conduct an analysis of

how KD affects the confidence calibration [1] of each internal classifier (IC). The concept of confidence

calibration has been introduced to ensure that a model’s probability reflects its actual accuracy. This is

highly relevant to EEnet’s performance because the early-exit policy is based on the confidence value

of the IC. If the model is underconfident, it cannot promptly exit easy-to-classify samples, which

leads to an increase in computational costs. Interestingly, our findings reveal that the quantized EEnet

tends to be underconfident in its predictions. To quantify the reliability of the confidence value, we

calculate the expected calibration error (ECE) [4] and maximum calibration error (MCE) [4] of each

IC. In Tab. II, we list the variance of error rate, ECE, and MCE when KD training is applied to the

EE+4MP. It can be observed that both ECE and MCE have improved across all classifiers.

Appendix E

Searched Configuration

In this section, we provide our search space and searched configuration of each model. For ResNet18,

the possible candidate bit-width of each residual block is set to {(W,A)} = {(2,2), (3,3), (4,4), (5,5)}.

We present the search result with Fig. 1, Fig. 2, and Fig. 3.



TABLE I. Early-exit rate and inference cost consumed at each classifier. USDNs are searched and evaluated on the

ImageNet dataset.

Model
Exit0 Exit1 Exit2

Exit Rate (%) Cost (G) Exit Rate (%) Cost (G) Exit Rate (%) Cost (G)

USDN-tr03(th=0.7) 5.05 0.459 28.77 4.041 66.18 12.059

USDN-tr02(th=0.7) 6.19 0.634 24.58 3.736 69.23 14.215

USDN-tr01(th=0.7) 6.47 0.662 30.61 5.360 62.93 16.182

TABLE II. Comparison between the proposed knowledge distillation loss and cross-entropy loss. The experiment is

conducted on USDN-tr01 EE+4MP (ResNet18) on the ImageNet dataset.

Exit0 Exit1 Exit2

Top.1 Err ↓ ECE↓ MCE↓ Top.1 Err ↓ ECE↓ MCE↓ Top.1 Err ↓ ECE↓ MCE↓

NonKD 0.659 0.110 0.233 0.376 0.102 0.153 0.298 0.071 0.113

KD 0.666 0.100 0.177 0.406 0.096 0.149 0.292 0.020 0.065

Variance (%) +0.95 -9.03 -24.03 +8.15 -6.06 -2.68 -1.83 -71.52 -42.72
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Fig. 1. Visualization of layerwise bit-width of EE+2.5MP (tr03) for ImageNet.0
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Fig. 2. Visualization of layerwise bit-width of EE+3MP (tr02) for ImageNet.
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Fig. 3. Visualization of layerwise bit-width of EE+3MP (tr01) for ImageNet.
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