
Back to Optimization: Diffusion-based Zero-Shot 3D Human Pose Estimation
Supplementary Material

MLP𝑥

𝑡

c

MLP score

MLP𝑃

𝑡

MLP score

GFPose

Ours

Figure 1. The architecture of GFPose and our diffusion model.
Compared with GFPose, there is no pose condition c as input, and
the noise xi is replaced by optimized pose P̃i.

1. Architecture Difference with GFPose
As shown in Fig 1, compared with GFPose, there is no

pose condition c as input, and the noise xi is replaced by
optimized pose P̃i. Our model is not the same as the GF-
Pose. We utilize Score Matching Network to build our hu-
man pose generation model.

2. Initial Pose Optimizer
In the initial pose optimizer, our optimization target is

argmin
Ro,To

∥∥∥K(RoPinit + To)− p2d

∥∥∥
2

(1)

s.t. Tmin ≤ To ≤ Tmax. (2)

To solve this optimization problem, we use the Adam
optimizer, with the learning rate as 0.1 and optimization it-
erations as 500. Instead of optimizing the 3 × 3 rotation
matrix, we optimize Ro based on quaternion to ensure the
generated Ro ∈ SO(3).

3. Optimize Translation
As described in Sec 3, there is a closed-form solution of

translation optimization. The optimization target is

argmin
Ti

∥∥∥C2d

(
K(Pi + Ti)− p2d

)∥∥∥
2
. (3)

The target can be solved by formalizing to

argmin
Ti

∥∥∥C2d

(
K(Pi + Ti)− p2d

)∥∥∥
2

= argmin
Ti

∥∥∥ATi − b
∥∥∥
2

where,

A =


−C2d,0 0 C2d,0r(0,0)

0 −C2d,0 C2d,0r(0,1)
...

−C2d,J 0 C2d,Jr(J,0)
0 −C2d,J C2d,Jr(J,1)



b =


C2d,0(Pi(0,0) − Pi(0,2)r(0,0))
C2d,0(Pi(0,1) − Pi(0,2)r(0,1))

...
C2d,J(Pi(J,0) − Pi(J,2)r(J,0))
C2d,J(Pi(J,1) − Pi(J,2)r(J,1))


r =

K−1p2d
∥K−1p2d∥

The optimization target can be solved as

Ti = (ATA)−1AT b (4)

4. 3D Pose Refinement Results
ZeDO not only has the capacity of denoising pre-defined

pose priors but also refines outputs produced by existing
2D-3D lifting networks. In order to validate its effective-
ness, we conduct comparative experiments pitting single
frame VideoPose3D [9] against our model, aiming to prove
that our model could further enhance performance. As
demonstrated in 1, we run our mixed-dataset-trained model
by taking the keypoint outputs from VideoPose3D as initial-
ization. As a result, we attain lower MPJPE performance on
all the datasets, which proves ZeDO’s outstanding refine-
ment ability.
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Dataset Methods MPJPE ↓ PA-MPJPE ↓

3DPW [11]
VPose3D(f=1) [9] 75.9 48.8

+ ZeDO 70.2(-5.7) 39.3(-9.5)

H36M [4]
VPose3D(f=1) 39.2 30.4

+ ZeDO 38.7(-0.5) 27.8(-2.6)

3DHP [8]
VPose3D(f=1) 89.1 60.5

+ ZeDO 78.2(-10.9) 51.9(-8.6)

Table 1. Refinement quantitative results on all three datasets. Our
method could further reinforce the performance of the traditional
2D-3D lifting model VideoPose3D [9], in which f = 1 represents
the single frame scenario. All experiments are S = 1. GT 2D
poses are used.

5. Results on Ski-Pose Dataset
Ski-Pose [10] is a dataset focusing on ski data, which

provides labels for the skiers’ 3D poses in each frame and
their projected 2D pose in all 20k images. We tested our
model as the cross-dataset evaluation on Ski-Pose dataset.
As shown in Table 2, we achieve SOTA as PA-MPJPE
81.0mm with the single hypothesis.

Methods CE PA-MPJPE ↓ MPJPE ↓
Rhodin et al. [10] 85.0 -
Wandt et al. [13] 89.6 128.1

Pavllo et al. [9] ✓ 88.1 106.0
Gong et al. [3] ✓ 83.5 105.4
Gholami [2] ✓ 83.0 99.4
ZeDO (S = 1) ✓ 81.0 106.3
ZeDO (S = 50) ✓ 56.8 74.2

Table 2. 3D HPE quantitative results on Ski-Pose dataset. S
indicates the number of hypotheses. All results are reported in
millimeters (mm). The pose generation model is trained on Hu-
man3.6M. GT 2D poses are used.

6. In Comparison to Unsupervised Methods
We also compared our results with other unsupervised

methods on the Human3.6m and 3DPW datasets, as shown
in Table 3 and 4. Here, we only applied backbones trained
on the Human3.6m dataset for evaluation. Apparently, our
method outperforms all of the previous SOTA methods.

7. Model Hyperparameter
Crucial training and inference hyperparameters are dis-

played in Table 5.

Supervision Methods PA-MPJPE ↓ N-MPJPE ↓
GT

Unsupervised Chen [1] 58.0 -
[1]reimplemented by [14] 46.0 -

Yu [14](temporal) 42.0 85.3
ElePose [12] 36.7 64.0

ZeDO (S = 1) 35.8 46.9

DT

Unsupervised Kundu [6] 62.4 -
Kundu [7] 63.8 -
Chen [14] 68.0 -
Yu [14] 52.3 92.4
ElePose [12] 50.2 74.4

ZeDO (S = 1) 49.0 63.6

Table 3. Quantitative results in comparison with unsupervised
methods on Human3.6m dataset. The top table illustrates the re-
sults using GT 2D keypoints, and the bottom shows the results of
detected 2D inputs. Our model attains top one performance among
all unsupervised methods.

Supervision Methods PA-MPJPE ↓ N-MPJPE ↓
Unsupervised ElePose [12] 64.1 93.0

ZeDO (S = 1,J = 17) 40.3 60.8

Table 4. Quantitative results in comparison with unsupervised
methods on Dataset 3DPW. GT 2D poses are used. The number of
joints is 17.

Hyperparameter

Batch Size 1024
Training Epoch 2000
Training Optimizer Adam [5]
Training Learning rate 2e-4
Training Warmup Iterations 5000
Training β1 0.9
Training β2 0.999
Inference timestamp t (0, 0.1]
Inference Iteration Steps 1000
Inference Optimizer Adam
Optimization Ratotaion Axis Z
Tmin 1.6m
Tmax 16m

Table 5. Important hyperparameters of training and inference on
the 3DPW dataset.
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