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In this supplementary material, we i) present an extended
ablation study to support the design choices for the proposed
ShadowSense model, ii) visualize additional qualitative re-
sults to compare our ShadowSense with the baseline RGB-
only detector, and iii) provide additional information about
the proposed dataset RT-Trees.

A. Extended Ablation Study
We performed comprehensive ablations to support the

selection of hyperparameters. The quantitative results ob-
tained with different values within the proposed method on
the validation set are presented in Table 1. This configuration
of the ShadowSense model represents the best-performing
combination of hyperparameters. Each configuration’s per-
formance was assessed independently while setting all others
to their best-performing values. Different distributions for
the FPN alignment scales β and fusion scaling weight η were
tested. In both cases, a descending order of values (largest to
smallest FPN feature map) with medium variance was found
to perform the best in terms of all three metrics considered.
In general, assigning higher scales to the smaller feature
maps (ascending order) performed worse than when using a
descending order of scales, since smaller feature maps are
of a lower resolution. The classic image masking proce-
dure we use to generate binary masks relies on watershed
segmentation [2, 3]. The performance of this mask genera-
tion process depends on the initial choice of thresholds for
the defined BG/FG markers, and we found (20,100) to be
the best choice among the alternatives. These alternatives
had either less or more differences between the thresholds,
which made it more difficult for the algorithm to correctly
determine the marker for pixels with intensities in between.
Thermal weight λ is used during inference to compute the
weighted average of the FPN feature maps from the RGB
and adapted thermal branches. Assigning a lower weight to
thermal features than RGB features did not help enhance the
identification of shadowed trees, though foreground perfor-

mance is somewhat satisfactory. As the thermal weightage
was increased, shadowed tree performance increased and
eventually leveled off. Using a weight of 5 was found to
be the best choice, which further increases the performance
on foreground trees. NMS values around 0.10 were tested,
according to the recommended default value in the base-
line RGB-only detection model we considered [4], and 0.15
yielded the best performance.

B. Additional Qualitative Results

These are visualized in Fig. 1 for different scenarios with
challenging illumination conditions, and demonstrate the
advantage of the proposed method over the RGB-only base-
line for shadowed trees in the background regions while
maintaining the baseline’s good performance on foreground
regions.

C. RT-Trees Dataset

In this section, we describe the collection, pre-processing,
and annotation procedures employed for the RT-Trees
dataset. Furthermore, we showcase instances of challeng-
ing scenarios within our dataset to provide a broader per-
spective. A multi-camera DJI H20T sensor instrument was
used to simultaneously acquire wide-angle RGB images
of 4056 × 3040 pixels with an 82.9◦ display field of view
(DFOV) and thermal images in the 8-14µm spectral band of
640× 512 pixels with 40.6◦ DFOV. The RGB camera uses a
1/2.3C̈MOS (12 MP) sensor, while the thermal camera uses
an uncooled VOx microbolometer sensor. The H20T also
contains a zoom RGB camera but it is not used in this work.
The sensor instrument was mounted to a Matrice 300 RTK
drone and successive image pairs were captured with an 80%
front and 75% side overlap in the thermal images via a fixed
flight path.

Thermal images were first upscaled through bilinear in-
terpolation to 1500×1000, while RGB images were center-
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Figure 1. Additional Detection Results. Each column shows (a)
RGB image, (b) Thermal image, (c) Generated mask; and predic-
tions by (d) Baseline [4], (e) Our DAT-adapted thermal branch, (f)
Proposed ShadowSense, and (e) Ground truth.

cropped to 1500×1000 pixels to discard edge distortions.
This cropping size also ensures that both images in a pair
display roughly the same amount of area. We then precisely
co-registered each RGB-thermal pair using the normalized
gradient fields-based workflow described in [1]. Fig. 7 shows
an example pair of 1500×1000 RGB-thermal images from
each of the 14 flights, highlighting the presence of varying il-
lumination and climatic conditions within RT-Trees. Table 2
reports the flight start time, flight duration, sun elevation, sun
azimuth, and air temperature at the time of each drone flight,
along with details on the number of images captured and
processed for training. The variation in weather and lighting
conditions caused due to different sun positions once again
highlights the challenge of RT-Trees. Similarly, Fig. 2 shows
the image brightness (L) averaged across all pixels in LAB
color space, distinguished by flight date. Images from flights
later in the day (e.g., October 7) are typically darker than
those taken closer to noon due to a lower sun position. The
exception to this is November 24, where the significant pres-
ence of white snow cover is inflating the average brightness
level. For evaluation purposes, we split the imaged area of
one of the flights (August 30), reserving around 25% for
the test set, 5% for the validation set, and using the rest
for training, as illustrated in Fig. 3. Images from the same
training area from all other flights were included in the train-
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Figure 2. Kernel Density Estimation Plot for Average Brightness
for images in each flight date, mapped first to LAB color space.

ing set, while images from the testing and validation areas
were discarded, leading to roughly 70% of the total captured
images being used for training. To allow for higher batch
sizes during training, we first split each training area image
(RGB and thermal) into six 500×500 patches, retaining the
high degree of overlap between neighboring images. On the
other hand, only the central 500×500 patch was considered
for each image in the evaluation sets, and we sampled ev-
ery third image in the capture sequence from these sets to
eliminate overlap, resulting in 10 patches for validation and
63 for testing. Only non-overlapping images from a single
flight date are included in the testing and validation sets to
ensure that each tree only appears in one image in those
sets so that detection performance is not overestimated. On
the other hand, the inclusion of overlapping imagery from
multiple dates helps promote diversity in the training set.
This explains the seemingly large disparity in the number of
training and validation/testing images.

Next, image pairs in the testing and validation sets were
annotated with bounding boxes in a two-step manner. First,
visible tree crowns were delineated from the RGB image
through careful inspection. Then, the corresponding reg-
istered thermal image was used to identify shadowed tree
crowns that had been missed in the first step – these new
boxes were marked as “difficult”. In total, 447 out of the
3611 tree crowns in the testing set were marked as difficult.
We provide additional statistics about RT-Trees using the
annotations for the testing set. In general, the difficult boxes
were fewer in number than non-difficult (visible) ones (see
Fig. 4) and were of a smaller area. This is because shadowed
trees are typically shorter and smaller than their neighbors
(Fig. 5). Although the annotated bounding boxes were pri-
marily square (1:1 linear relation in Fig. 6), a considerable
number of rectangular boxes are present in the testing set due
to the presence of different species with non-circular crowns,
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partial tree crowns at the edges of images, and overlapping
canopies in the densely forested region, another challenge
posed by the proposed dataset.
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Figure 3. GPS-based Data Split. Each point represents the lo-
cation where a drone image was taken. The assigned cutoff line
separates the testing area from the training (and validation) area.
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Figure 4. Distribution of Bounding Boxes per Image for all boxes
(top) and only difficult boxes (bottom) in the testing set.
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Figure 5. Distribution of Bounding Boxes Areas for all boxes,
difficult boxes only, and non-difficult boxes (i.e., visible in RGB
image) in the testing set.
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Figure 6. Distribution of Bounding Boxes Dimensions for all
boxes in the testing set.
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Table 1. Extended Ablation Study for different hyperparameter settings in the proposed method based on AP50 and AP100 metrics, trained
without annotation on the RT-trees training set. Results on the RT-Trees validation set are reported. While changing one hyperparameter, all
others are set to their best-performing values as described in the implementation details for the proposed ShadowSense configuration (also
emboldened here).

Hyperparameter Value(s)
All Trees Shadowed Trees

% AP50 (↑) % AR100 (↑) % Identified (↑)

FPN Alignment Scales β
In order of largest (lowest)
to smallest (highest) FPN
level.

[1.0, 1.0, 1.0, 1.0, 1.0] Identical Weighting 54.02 24.73 19.20
[1.0, 1.0, 0.75, 0.5, 0.25] Descending w/ Low Variance 54.20 24.97 15.20
[1.0, 1.0, 0.5, 0.05, 0.01]Descending w/ Med. Variance 55.48 25.86 20.80
[1.0, 0.5, 0.1, 0.01, 0.005] Descending w/ High Variance 53.20 24.55 20.00
[0.25, 0.5, 0.75, 1.0, 1.0] Ascending w/ Low Variance 50.96 24.70 12.80
[0.01, 0.05, 0.5, 1.0, 1.0] Ascending w/ Med. Variance 50.21 24.61 13.60
[0.005, 0.01, 0.1, 0.5, 1.0] Ascending w/ High Variance 48.49 23.41 8.00

Fusion Scaling Weights η
In order of largest (lowest)
to smallest (highest) FPN
level.

[1.0, 1.0, 1.0, 1.0, 1.0] Identical Weighting 54.62 24.28 19.60
[1.0, 1.0, 0.8, 0.6, 0.4] Descending w/ Low Variance 54.84 24.88 20.80
[1.0, 1.0, 0.5, 0.2, 0.2] Descending w/ Med. Variance 55.48 25.86 20.80
[1.0, 0.5, 0.2, 0.05, 0.01] Descending w/ High Variance 51.71 23.00 20.00
[0.4, 0.6, 0.8, 1.0, 1.0] Ascending w/ Low Variance 52.09 22.75 17.60
[0.2, 0.2, 0.5, 1.0, 1.0] Ascending w/ Med. Variance 50.86 22.26 16.00
[0.01, 0.05, 0.2, 0.5, 1.0] Ascending w/ High Variance 48.81 21.07 10.40

Intensity Thresholds
Min. and max. markers
used in mask generation.

[30, 75] Low number of initially unmarked intensities 49.86 21.74 8.00
[20,100] Medium number of initially unmarked intensities 55.48 25.86 20.80
[10,125] High number of initially unmarked intensities 51.67 22.23 18.40

Thermal Weight λT

Used in weighted fusion
during inference.

0.5 Higher weighting for RGB features 50.57 22.65 13.80
1.0 Identical weighting for RGB and thermal features 50.31 22.03 16.00
2.5 | 52.61 23.08 18.40
5.0 ↓ 55.48 25.86 20.80
7.5 Higher weighting for thermal features 52.01 22.86 20.80

Non-max Suppression
NMS threshold used in
training and inference.

0.05 Less overlap in filtered predictions 49.15 22.25 17.20
0.10 | 50.50 23.30 16.00
0.15 ↓ 55.48 25.86 20.80
0.20 More overlap in filtered predictions 50.60 23.97 17.20

Table 2. RT-Trees Dataset Information by Flight Date. All dates are from the year 2022. Information about the flight, lighting and weather
conditions, and number of images is listed. Approximately 70% of the raw image pairs captured for a given date are sampled for the training
set based on GPS location (see Fig. 3), and then divided into six 500×500 patches. From the August 30 data, 63 images are taken for testing
and 10 for validation, hence the total number of image pairs in RT-Trees is 49879.

Flight Date Time of First
Capture (24h)

Flight
Duration (min)

Sun
Elevation (◦)

Sun
Azimuth (◦)

Air
Temperature (◦C)

Raw Image
Pairs Captured

500×500 Patches in
Training Set

July 20 11:04 27 44.77 120.15 20.3 827 3582

July 26 10:18 28 37.51 109.32 20.8 828 3588

August 9 10:16 28 34.45 111.71 19.8 820 3552

August 17 12:15 33 46.12 147.29 24.5 825 3570

August 30 11:21 31 37.26 134.21 25.4 814 3516

September 9 11:40 32 36.08 142.39 14.0 824 3570

September 15 11:00 27 30.20 133.15 17.5 825 3582

September 23 11:14 28 29.12 139.04 14.7 820 3552

October 4 11:13 31 25.43 141.56 16.8 820 3558

October 6 15:16 27 27.22 210.10 9.8 808 3498

October 7 19:02 27 0.26 261.26 2.8 819 3552

October 12 10:53 27 20.92 138.40 11.5 826 3576

October 19 11:35 27 22.29 150.20 12.4 821 3558

November 24 16:10 28 2.21 230.46 4.7 819 3552

Total 11496 49806
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(e) August 30 (f) September 9

(g) September 15 (h) September 23
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(m) October 19 (n) November 24

Figure 7. Example of Drone-collected Image Pairs for each flight date after performing co-registration.
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