
INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings
Supplementary Material

Amirhossein Kazerouni 1 Reza Azad 2 Alireza Hosseini 3 Dorit Merhof 4,5 Ulas Bagci 6
1 School of Electrical Engineering, Iran University of Science and Technology, Iran
2 Institute of Imaging and Computer Vision, RWTH Aachen University, Germany

3 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran
4 Faculty of Informatics and Data Science, University of Regensburg, Germany

5 Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
6 Department of Radiology, Northwestern University, Chicago, USA
{amirhossein477, rezazad68}@gmail.com, {arhosseini77}@ut.ac.ir

{dorit.merhof}@ur.de, {ulas.bagci}@northwestern.edu
https://xmindflow.github.io/incode

A. Experimental Results

In this section, we broaden our experimental scope to
encompass a more comprehensive comparison between our
approach and state-of-the-art (SOTA) methods. We have
demonstrated that the inherent simplicity of INCODE con-
tributes to enhanced performance compared to its counter-
part SOTA methods, specifically in terms of expressiveness
and representation capacity. These findings underscore the
efficacy of our approach in pushing the boundaries of INR
networks and facilitating their applicability across diverse
domains. We now present additional visualizations that dis-
tinctly show the advantage of our approach.

A.1. Image representation

As depicted in Figure 1 and Figure 5, it is evident that
INCODE achieves superior qualitative and quantitative per-
formance. Particularly in Figure 1, INCODE exhibits an
approximate accuracy improvement of +2.98 dB and +4.59
dB compared to FFN [5] and WIRE [3], respectively. The
zoomed-in image distinctly illustrates INCODE’s ability
to grasp intricate details of the Eiffel Tower. In contrast,
ReLU+P.E. and MFN [1] yield blurry outcomes, while
Gauss [2] displays slight color alteration, although it cap-
tures certain intricate features. Gauss also struggles to rec-
ognize the orange object positioned at the tower’s center.
Likewise, SIREN [4] fails to capture the full complexity of
the tower’s structure, leading to a smoothed and blurred rep-
resentation.

Additionally, Figure 5 presents a challenging image with
intricate patterns, posing a challenge for representation.
Notably, INCODE and FFN emerge as the sole methods

achieving a PSNR value over 30 dB, with INCODE exhibit-
ing a +1.56 improvement over the second-ranking FFN.
As evidenced in the zoom-in image, ReLU+P.E. expectedly
yields a blurred output, given the inherent properties of its
ReLU activation function. Interestingly, WIRE and Gauss
encounter difficulty in precisely grasping the image’s color
characteristics, leading to slight color differences. While
MFN effectively addresses this color challenge, it falls short
in capturing the image’s intricate details, particularly its
edges.

Overall, our study shows that INCODE excels in image
representations. It consistently outperforms other methods
across various images, even with intricate patterns. This
success is due to INCODE’s ability to capture intricate de-
tails. While alternative methods faced challenges in repre-
senting complex patterns, colors, or high-frequency infor-
mation, INCODE exhibited competence in addressing these
challenges. Thus, our findings highlight INCODE as one of
the optimal choices for robust and superior image represen-
tation.

A.2. Audio representation

We present audio representation visualization results
along with its error maps in Figure 2. These visualizations
help to understand the strength of our approach. We have
provided a detailed analysis of these results in the main sec-
tion of the paper to ensure a comprehensive understanding
of our findings. In terms of sound playback quality, Gauss
introduces a noticeable squeak-like sound that accompanies
the main audio. With ReLU+P.E., noise dominance be-
comes more pronounced, making it difficult to discern the
original sound. While employing SIREN, some moments
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Figure 1. Image representation: Comparison of INCODE with SOTA methods.

are marred by bothersome noise, as indicated by the error
map. However, INCODE significantly outperforms these
methods by having notably less noise interference. This as-
pect positions INCODE as a favorable choice for encoding
audio data with improved quality.

A.3. Super resolution

To illustrate the efficacy of our approach in the super-
resolution task, we have included a visual comparison of
4× super-resolution in Figure 6. From a quality perspec-
tive, INCODE produces sharper results with finer details in
the butterfly’s wing, while the blurred outcomes of SIREN,
FFN, Gauss, and ReLU+P.E. are evident, even though the
quantitative values are relatively close. This visual compar-
ison supports our quantitative findings in table 1 (see the
main paper) and affirms INCODE’s proficiency in super-
resolution tasks, where it offers better quality when per-
forming upsampling.

A.4. Computed Tomography (CT) reconstruction
Under-measurement in CT samples results from a range

of factors that reduce the accuracy of the imaging process.
Artifacts, stemming from issues like patient movement dur-
ing scanning, metallic objects causing beam distortion, and
equipment calibration problems, contribute to discrepan-
cies. INRs address these concerns and solve this inverse
problem by leveraging their inductive bias. We investigate
the impact of varying the number of measurements (rang-
ing from 50 to 400, with increments of 50) as shown in Fig-
ure 3. Notably, SIREN, WIRE, and ReLU+P.E. yield con-
sistent results across all measurements. Particularly, WIRE
excels in CT reconstruction with 50 measurements; how-
ever, increasing the data information in such models doesn’t
enhance their performance, indicating saturation. In con-
trast, INCODE exhibits considerable improvement as mea-
surements increase from 100 to 400, showcasing the effec-
tiveness of incorporating deep prior information. Notably,
INCODE with 150 measurements outperforms all nonlin-
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Figure 2. Audio representation: We compare INCODE with SOTA methods for audio representation. In the third column, we display the
reconstruction error.
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Figure 3. INCODE vs. SOTAs in CT reconstruction across differ-
ent numbers of projections.

earities in the full range of projection numbers, except for
MFN, which closely competes after reaching 200 projec-
tions and performs the second best. These findings ac-
knowledge the robustness and power of INCODE in ad-
dressing under-measurement challenges within CT recon-
struction.

A.5. Inpainting
Image inpainting poses a formidable challenge as models

are tasked with predicting entire pixel values based on only

a fraction of trained pixel data. The high capacity of INR
provides the opportunity to accomplish this inverse problem
challenge. The strong prior ingrained within the space of
INR functions paves the way for applications like inpaint-
ing from limited observations, where it uses the learned rep-
resentation of the trained model to predict inpainting miss-
ing values. Our approach involves randomly sampling 20%
of the pixels and then employing the model’s learned rep-
resentation to predict the missing pixels. The comparison
result is shown in Figure 4. As observed in other tasks, IN-
CODE’s power in capturing intricate features, particularly
edges, stands out compared to other methods that tend to
yield blurred outcomes. While a modest +0.38 dB improve-
ment is noted compared to SIREN, the visual presentation
demonstrates that SIREN, much like ReLU+P.E., struggles
to comprehensively capture high-frequency details.

A.6. Neural radiance fields

In our approach, we followed a strategy akin to [3], mak-
ing use of the publicly available torch-ngp package [6,7] to
train the NeRF model. Our NeRF architecture encompasses
two main networks: one for predicting sigma (σ) and the
other for determining color (RGB). These networks are
constructed as 4-layer MLPs, each with 182 hidden fea-
tures.

Additionally, we introduced two harmonizer networks,
one for the sigma network and another for the color net-
work. These harmonizers employ 4-layer MLPs, featuring
32, 16, 8, and 4 nodes, with each layer followed by Lay-
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Figure 4. Image inpainting: Comparison of INCODE with SOTA
methods.

erNorm and the SiLU activation function. They receive a
latent code and condition their corresponding composer net-
works, which are initialized similarly to the denoising task.

To generate the latent code, we utilized a truncated
ResNet34 model at its fifth layer, followed by adaptive av-
erage pooling. During training, a single random image from
the training dataset was used, and for testing and validation,
we again employed one random training image. The color
MLP took positional coordinates (x, y, z) and direction pa-
rameters (θ, ϕ) as inputs, while the sigma MLP solely re-
quired positional information.

For our experimental results, depicted in Figure 7, we
utilized a Lego dataset comprising 100 training images,
each downsampled by 1/2 to 400 × 400 dimensions, for
training the NeRF. Subsequently, we evaluated the model’s
performance on an additional 200 images. Training of the
NeRF models was conducted on an A-100 GPU with 20 GB
of memory. Throughout training, we used learning rates of
3× 10−4 for INCODE, 3× 10−4 for SIREN, 6× 10−4 for
WIRE, 3 × 10−3 for Gauss, and 1 × 10−2 for ReLU+P.E.
The learning rate is decreased to 0.1× initial value over a
total of 3000 training epochs to achieve their optimal out-
puts. Additionally, we set omega (ω0) to 40 for INCODE,
SIREN, and WIRE, and sigma (s0) to 40 for WIRE and
Gauss. Apart from ReLU, we did not use positional en-
coding for other nonlinearities to highlight their individual
capabilities.

As shown in Figure 7, our approach achieves a +0.16 dB
improvement over SIREN and a +0.79 improvement com-
pared to WIRE. Qualitative results also demonstrate a supe-

rior performance of INCODE compared to SOTA models.
Notably, INCODE excels in capturing fine-grained details
and information. For instance, it effectively captures in-
tricate features such as the middle black connector in the
loader, while SIREN failed to learn. Also, INCODE out-
performs other methods like WIRE, ReLU+P.E., and Gauss,
which exhibit blurred and smooth results in comparison.

B. Experimental Analysis
B.1. Convergence rate comparison

We analyze the convergence rate of INCODE in com-
parison to other methods across three distinct representation
tasks: image, occupancy volume, and audio, as depicted in
Figure 8. The data used for each task corresponds to the re-
spective domain in the main paper. Remarkably, INCODE
consistently showcases accelerated convergence compared
to SOTA architectures. This expedited convergence is most
pronounced in the audio domain, where a substantial gap
between SIREN and INCODE is evident. Leveraging its
robust approximation capacity, INCODE achieves fast con-
vergence with high fidelity, rendering it an apt choice for
representing different signals.

B.2. Impact of depth and width of the network

The analysis of the network’s depth and width are pre-
sented in Figure 9, which sheds light on the impact of ar-
chitectural parameters in shaping the performance of IN-
CODE. By systematically varying the number of hidden
layers and their width, we gain insights into the trade-off
between model complexity and approximation accuracy.

In the left figure, we vary the network’s depth from 2-
layer MLP to 6-layer, while keeping the width constant at
256. Notably, INCODE exhibits competitive performance
compared to other methods in lower layers. However, as
the network deepens, INCODE distinctly outperforms FFN,
demonstrating its capacity to effectively capture more in-
tricate information with increasing model depth. Shifting
to the right figure, we explore the effect of hidden features
by adjusting the network’s width from 64 to 320, in incre-
ments of 64, while maintaining a 5-layer MLP. The trend
depicted in the plot accentuates INCODE’s remarkable per-
formance, showcasing a steep ascent. Throughout the spec-
trum of hidden feature counts, INCODE consistently out-
performs other SOTA methods. This observation highlights
INCODE’s proficiency in capturing broader patterns as the
width of the network expands, underlining its versatility and
ability to adapt to varying levels of complexity.

C. Experimental details
In all experiments, we employed a 5-layer MLP with 256

hidden features for all architectures. However, for WIRE,
we followed their recommended structures as outlined in
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Figure 5. Image representation: Comparison of INCODE with SOTA methods.

Ground truth
PSNR=29.88 dB, SSIM:0.87

INCODE
PSNR=28.81 dB, SSIM:0.85

SIREN
PSNR=28.55 dB, SSIM:0.83

WIRE

PSNR=29.35 dB, SSIM:0.86
MFN

PSNR=25.52 dB, SSIM:0.82
ReLU + P.E.

PSNR=27.07 dB, SSIM:0.83
Gauss

PSNR=29.41 dB, SSIM:0.86
FFN

Figure 6. Super Resolution. Results of a 4× single image super-resolution using various approaches.
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Figure 7. Neural Radiance Fields: The figure presented above illustrates rendered images generated by a neural radiance field using
different methods. Notably, INCODE consistently outperforms all other methods in terms of visual reconstruction quality, highlighting its
robust feature representation.
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Figure 8. Convergence rates in different representations: Explore the convergence rates of Image, Occupancy volume, and Audio
representations.
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Figure 9. Impact of network depth and width: Explore the in-
fluence of network depth and width on performance.

their paper to achieve optimal performance. Specifically,
for image-based tasks, we used a 4-layer MLP with s0 = 30

and ω0 = 20, featuring 300 hidden features. For the oc-
cupancy task, we utilized a 4-layer MLP with 256 hidden
features, alongside s0 = 40 and ω0 = 10. In the case of
CT reconstruction, we employed a 5-layer MLP with 256
hidden features and set s0 = 10 and ω0 = 10. Lastly, for
the denoising task, we opted for the same architecture as
the image representation and for s0 = 4 and ω0 = 4. In
FFN, a mapping input size of 256 is utilized, for instance,
to map image coordinates from 2 to 512, and the parame-
ter B, a random Gaussian matrix, is scaled by a factor of
10. We configured the value of s0 for the Gauss model as
follows: s0 = 30 for image representation, s0 = 100 for
audio representation, and s0 = 10 for the inverse problem
tasks. In addition, we utilized the same initial parameters as
described for INCODE in the case of SIREN.
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