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Supplementary Material

Overview
The Supplementary material includes:

• Details on loss function used for training the network.

• Quantitative results comparison of various losses settings on the UIEB dataset Table S 1

• Qualitative comparison of results obtained with various loss settings in Figure S 1.

• Qualitative results of the proposed Spectroformer and existing state-of-the-arts for underwater image restoration on
real-world UCCS dataset in Figure S 2.

• Qualitative results comparison on real-world SQUID dataset in Figure S 3.

• Qualitative comparison of the proposed Spectroformer and existing state-of-the-arts for underwater image restora-
tion on underwater real-world U45 dataset in Figure S 4.

• Application of the proposed Spectroformer and existing state-of-the-arts as pre-processing step for depth on under-
water U45 dataset in Figure S 5.

Training Losses
LTotal = λ1 ∗ L1 + λ2 ∗ L2 + λ3 ∗ L3 + λ4 ∗ L4 (1)

Where, λ1,2,3,4 ∈ (0.03, 0.02, 0.01, 0.025), Perceptual loss (L1), Charbonnier loss (L2), Multiscale Structural Similarity
Index (MS-SSIM) loss (L3), and Gradient loss (L4).

Perceptual Loss (L1):
Perceptual loss provides a way to measure the perceptual similarity between generated and target images using the feature
representations of a pre-trained neural network. It has proven effective in enhancing the quality of generated images in
various image generation tasks. Let O be the target image and Gt be the generated image. We use a pre-trained VGG19
network (ϕi) to extract feature maps at different layers. The perceptual loss, L1, is then computed as the difference
between the feature maps of the target and restored images:

L1 =

N=4∑
i=1

∥ϕi(O)− ϕi(Gt)∥22 (2)

Here, ϕi represents the feature extraction function at layer i of the CNN, and (N = 4) is the total number of layers
considered for perceptual loss calculation.

Charbonnier loss (L2):

Using the MSE loss to train the network generally causes blurry reconstruction because it maximizes the log-likelihood
of a Gaussian distribution. We opted for the Charbonnier loss, a differentiable version of the L1 norm,, to avoid this issue.
The Charbonnier loss is determined between the restored image images (O) and their corresponding ground-truth image
(Gt), and it is defined as follows:

L2 = EO∼Q(O),Gt∼Q(Gt)

√
(O −Gt)

2
+ ϵ (3)

Where, Q(O) and Q(Gt) are the distributions of the restored image (O) and the ground-truth image (Gt), respectively.
Additionally, the value of ϵ is empirically set to 1× 10−3.
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MS-SSIM loss (L3):

The Structural Similarity (SSIM) loss primarily deals with a single input resolution. In contrast, the Multiscale SSIM
(MS-SSIM) loss offers greater flexibility by considering different input resolutions.

L3 = 1− (MSSSIM(O,Gt)) (4)

Gradient loss (L4):

Generally, the Charbonnier loss prioritizes low-frequency components. However, when training the network to incorporate
high-frequency details, the gradient loss plays an important role. It is a second-order loss function that enhances the
sharpness of edges in the output [1]. ĜO and ĜGt represents distribution of Q(O) and Q(Gt) respectively.

L4 = EĜO∼Q(O),ĜO∼Q(Gt)

∥∥∥ĜGt
− ĜO

∥∥∥
1

(5)

Table S 1: Quantitative results comparison of various loss settings on the UIEB dataset (L1: Perceptual loss, L2: Char-
bonnier loss, L3: Multiscale Structural Similarity Index (MS-SSIM) loss and L4: Gradient loss).

Loss settings PSNR SSIM
L1 21.99 0.866
L1 + L2 22.04 0.886
L1 + L2 + L3 24.61 0.901
L1 + L2 + L3 + L4 24.96 0.917

Qualitative Comparison of Results Obtained with Various Loss Settings

Figure S 1: Qualitative comparison of results obtained with various loss settings.

Results on Real-world UCCS Dataset

Figure S 2: Qualitative comparison of the proposed method (Ours) with existing state-of-the-art methods (UIBLA [2],
RGHS [3], Water-Net [4], CLUIE-Net [5], U-shape [6], TWIN [7]) for underwater image restoration on real-world UCCS
dataset [8].
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Results on Real-world SQUID Dataset

Figure S 3: Qualitative results comparison of state-of-the-art (UIBLA [2], RGHS [3], Water-Net [4], CLUIE-Net [5],
U-shape [6], TWIN [7]) and the proposed method (Ours) on SQUID dataset [9] for underwater image restoration.

Underwater Image Restoration on real-world U45 Dataset

Figure S 4: Qualitative comparison of the proposed method (Ours) with existing state-of-the-art methods (UIBLA [2],
RGHS [3], Water-Net [4], CLUIE-Net [5], U-shape [6], TWIN [7]) for underwater image restoration on real-world U45
dataset [8].
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Depth-map of Degraded and Restored Images on Real-world U45 Dataset

Figure S 5: Application of the proposed Spectroformer and existing state-of-the-arts (UIBLA [2], RGHS [3], Water-
Net [4], CLUIE-Net [5], U-shape [6], TWIN [7]) as a pre-processing step for depth-estimation on underwater U45 dataset
[10].
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