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Our JSNorm layers require the same computational re-
sources as the original normalization layers. However, the
current implementations of normalization layers employ an
optimized mathematical expression tailored for computing
derivatives during the backpropagation phase. This opti-
mization is achieved through manual derivation and oper-
ates independently of the automatic differentiation mech-
anisms that are integral to many machine learning frame-
works.

In this supplementary material, we present the optimized
expression for the derivative of our method. Specifically, we
provide the details for our batch normalization layer, while
noting that similar expressions can be used for our layer nor-
malization. We maintain the same notation as in the main
text, with the addition of the symbol S denoting the sum of
the squares of a vector, or ∥ · ∥22. Therefore, SµB = ∥µB∥22.

1. Chain Rule Expansions

Below, we present the partial derivatives derived using
the chain rule, starting from the final output yi. The main
three outputs are the partial derivatives of the loss function
ℓ with respect to γ, β, and xi, given an input x ∈ Rn×c.
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2. Partial Derivatives
The actual derivatives for the partials are calculated as

follows:
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3. Simplifying Expressions
Multiple expressions can be simplified as follows:
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