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A. Hyperparameter setting

In this section, we provide a detailed description of
the model architecture and hyperparameters for the autoen-
coder used in image compression, as well as the structure of
the diffusion model. The input dimension for all networks
is 3D. For the autoencoder, we applied the network archi-
tecture of VQGAN [4], which is explained in Table A. The
structure of the MS-SPADE block present in the bottleneck
of the autoencoder is described in Table B. Additionally, we
applied a UNet-based network architecture to the diffusion
model used in previous studies [5, 8], which is explained in
Table C.

Input Size dim |Z| Channels Embedding Size

192× 192× 144 8192 [256,512,512] 3

Batch Size Epochs Model Size Param Size

1 500 749M 237M

Table A. Detailed Hyperparameters for latent diffusion model.

MS-SPADE Block

Stream Conv. Act. Norm. Conv. Act. Norm. Out ch.

In C7 IN ReLU 128

ResBlock C3 ReLU IN C3 ReLU IN [256,256]

SPADEBlock C3 ReLU MS-SPADE C3 ReLU MS-SPADE [256,256,256,128]

Out C7 3

Table B. Detailed MS-SPADE Block. Ci is the convolution layer
with i × i kernel. IN is the instance normalization layer, and
MS-SPADE is the Multi switchable SPADE layer that is applied
differently depending on the target modality. Out ch. represents
the output channels, and both ResBlocks and SPADEBlocks are
repeated 2 and 4 times, respectively

Stream Condi Batch Size Model Size Param Size

48× 48× 36× 3 [128,256,512] 1 722M 658M

Diffusion steps Noise Scheculde βstart βend Epochs

1000 scaled-linear 0.0015 0.0195 800

Table C. Detailed hyperparameters for latent diffusion model.

B. Dataset

We trained our model on the BraTS 2021 training
dataset, encompassing 1251 subjects and four MRI modal-
ities (T1, T1ce, T2, FLAIR). Each MRI scan measures
240 × 240 × 155 in dimensions, with a spatial resolution
of 1× 1× 1mm3. To assess our model’s image translation
capabilities, we utilized the BraTS 2021 validation dataset,
containing 219 subjects. Additionally, we tested our model
using the IXI dataset, including T1, T2, and PD modali-
ties. From the 574 subjects, 459 were allocated for train-
ing and 115 for testing. Each of these MRI scans measures
256× 150× 256 in dimensions with a spatial resolution of
0.9375× 0.9375× 1.2mm3

C. Comparison Methods details

To validate the effectiveness of our model, we used com-
monly used methods in medical image-to-image transla-
tion as comparison models. For 2D methods, we employed
Pix2Pix [6], CycleGAN [9], NICEGAN [2], RegGAN, [7]
and ResViT [3]. For the 3D method, we employed the
3D versions of pix2pix and CycleGAN, as well as the Ea-
GAN proposed as a 3D method, for comparison. We com-
pared using the discriminator-induced Ea-GAN (dEa-GAN)
model as presented in the reference [1]. 3D methods are
not as commonly used and come with higher computational
costs making it challenging to extend existing 2D models to
3D. 2D methods were executed with a batch size of 32 in
the axial view. For the BraTS dataset, they operated on im-
ages sized 240×240, while for the IXI dataset, zero padding
was added to process images at 256× 160 dimensions. All
3D methods were conducted with a batch size of 1. On the
BraTS dataset, images were cropped to 192 × 192 × 144
after background removal. For the IXI dataset, images were
cropped and padded to measure 256× 160× 224.



Figure A. The figures showcase the image translation results on the IXI dataset from each source modality to the corresponding target
modality using our proposed model for all possible combinations.

Source Target T1 T2 PD

Metric PSNR ↑ NMSE ↓ SSIM ↑ PSNR ↑ NMSE ↓ SSIM ↑ PSNR ↑ NMSE ↓ SSIM ↑

T1 29.487 0.047 0.941 27.265 0.071 0.921 27.729 0.072 0.922
±0.522 ±0.020 ±0.024 ±0.629 ±0.022 ±0.015 ±0.685 ±0.025 ±0.018

T2 27.368 0.074 0.929 29.259 0.045 0.937 27.913 0.067 0.927
±0.624 ±0.031 ±0.027 ±0.582 ±0.017 ±0.015 ±0.659 ±0.023 ±0.019

PD 27.968 0.070 0.931 27.834 0.067 0.925 29.396 0.042 0.939
±0.521 ±0.028 ±0.028 ±0.627 ±0.024 ±0.025 ±0.488 ±0.019 ±0.027

Table D. The values present the quantitative evaluation of image translation results on the IXI dataset from source modalities to target
modalities using our proposed model.

D. Additional Experimental Results
We also analyze which source modality is most effective

in synthesizing the target modality within the IXI dataset.
Figure A provides the qualitative evaluation results of this
multi-modal translation, while Table D offers the quanti-
tative assessment outcomes. From the qualitative evalua-
tion, we observe that there are minimal differences between
modalities, and most present a satisfactory translation per-
formance. As for the quantitative evaluation, it is evident
that PD is effective in image translation when generating
T1, and similarly for T2. Conversely, T2 proves to be effi-
cient when producing PD images.
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