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In this supplementary material, we provide additional
implementation details (Section 1), quantitative results with
analyses (Section 2), and additional qualitative results (Sec-
tion 3) of our proposed HCCNet, an efficient and effective
semantic matching learner on a hypercolumn correlation.

1. Additional implementation details.

Visualization of feature slicing. The visualization of our
proposed feature slicing is provided in Figure 1. Given L
intermediate feature maps whose channel dimensions sum
up to C, using the slice size of NV results in a total of G = %
feature slices with the same channel dimensions for hyper-
column correlation computation.

Hyperparameters for flow field formation and key-
point transfer. We provide detailed hyperparameters for
our methods explained in the paper. GP ¢ R30%30,
the 2-dimensional Gaussian kernel centered on p =
arg maxng‘f;, in Eqn. 8 of the main paper, has a standard
deviation of 10. The distance threshold 7 for the soft sam-
pler in Eqn. 9 of the main paper is set to 0.1 during training,

and 0.05 during inference.

Coordinate normalization of dense flow field. Adhering
to the conventions used in [6—8], we normalize the coordi-
nates of the dense regular grids - P x, Py € R¥W*2 for the
source and target images, respectively - such that the dense
regular grids and the dense flow field will have coordinates

. h -
in the range || |, |,
aims at numerically stabilizing the loss gradients.
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ResNet-101 feature extractor settings. Throughout train-
ing, the weights of the ResNet-101 [3] feature extractor net-
work are frozen up to conv3_x to prevent overfitting the
network to the train set, since all semantic matching bench-
marks have a significantly smaller number of images (2K)
compared to the ImageNet dataset [1].

Additional details for feature slicing and hypercolumn
correlation construction. As mentioned in Section 3 of
the main paper, we view each feature map at every layer as

a composition of multiple sub-features concatenated along
the channel dimension: X() = concat, g [X@)] for all
I € [L], where G is the number of slices used to divide
feature map X (). Throughout the main paper, we refer to
G® as (number of) groups, and the resulting channel size
of each slice as the slice size. In our experimental settings,
we use the intermediate features extracted from the bottle-
neck layers of conv3_x, conv4_x and conv5_x, where
the number of bottleneck layers are 4, 23 and 3, respec-
tively, and the intermediate features have channel sizes of
512, 1024 and 2048, respectively. We use a slice size of
256, resulting in (4X512)+(23X2§%24)+(3X2048) = 124 num-
ber of groups. Note that the first column of Table 5 of the
main table refers to the slice size, while G in Figure 4 of
the main paper refers to the group number. Therefore, in
Figure 4 of the main paper, G = 30, G = 62, G = 124 and
G = 248 corresponds to slice sizes of None (not sliced, bot-
tleneck layer features are used directly), 512, 256 and 128,
respectively.

Experimental environment. All experiments are run on
a machine with an Intel Xeon Gold 6242 CPU and an
NVIDIA TITAN RTX with 24G VRAM.

2. Additional quantitative results and analysis.

Analysis on efficacy of feature slicing. To provide an
in-depth analysis on feature slicing, we plot input C and
hidden ((CWy4) correlation statistics from our point-
wise convolution in Fig. 2 where each bar represents av-
erage magnitude (y-axis) for some group g (x-axis) of the
hypercolumn correlation'. Both models exhibit similar
trends, but the statistics of using our proposed feature slic-
ing (blue) shows higher variance in magnitudes, indicat-
ing fine-grained differentiation of relevant correlation ac-
tivations. In contrast, the statistics without feature slic-
ing (red) is relatively uniform, implying the inability to
exploit rich channel-wise information of the input feature
pairs {(X, Y)},c ).

'E.g., m 2 (x,y) |Cx.y.gl given C as input.
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Figure 1. Visualization of feature slicing. Feature slicing slices the multi-level features with varying channel dimensions to an increased
number of equi-channel features for the computation of rich hypercolumn correlation.
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Figure 2. Average magnitude for some group g with and without feature slicing. The high variance of magnitudes when using our
feature slicing implies that feature slicing enables fine-grained differentiation of relevant correlation activations to establish more reliable

correspondences.

Influence of image size on HCCNet. In Table 1, we com- PF-PASCAL
Slicing strategy
0.05 0.1
Img size glz)_SPASCOﬁL ?mn?; 1(11(51311;1) F]Zg)P s None 77.3 92.2
’ ’ Neighbour (Ours) 80.2 92.4
224 60.4  88.1 29 2.0 1.5 Randomyeg 5491040 7771062
240 (Ours) 80.2 924 30 2.0 1.7 Even dist. 75.8 91.1
256 77.9  92.0 30 2.2 2.0
320 712 89.7 38 3.1 4.0 Table 2. Results of HCCNet when using varying feature slic-
384 67.1 873 49 4.3 7.3 ing strategies. It can be seen that our current choice of assigning
neighbouring features into a slice shows better performances com-
Table 1. Results of HCCNet when using varying image sizes. pared to random or evenly distributed assignment of features.

The results show that our current setting of using 240 as the height

and width of the images yields the best results.
Net clusters neighbouring features into a slice (Neighbour).

pare the results of HCCNet when using varying image sizes. Random,.y refers to random clustering of features at test
It can be seen that our image size of 240 x 240 achieves the time for the Neighbour model, without replacement. Even
best performance-compute tradeoff. We suggest that the op- dist. clusters the features in an evenly distributed manner
timal image size depends on the method, as existing meth- i.e., features of a slice comes from across the entire list of
ods show optimal performances at varying image dimen- features. Our strategy yields the best performance.

sions. Comparison to SCorrSAN [5]. We compare HCCNet
Analysis on feature slicing strategy. In Table 2, we against SOTA semantic matching methods of VAT [4] and

compare against other potential slicing strategies. HCC- SCorrSAN [5]. For SCorrSAN, the code was released but



SPair-71k PF-PASCAL . time memory FLOPs
Method @ (ppox @tjmg Image size (ms) (GB) (G)
0.05 0.1 0.05 0.1
VAT [4] 31.7 54.2 78.3 92.3 512 x 512 127 3.6 68.0
SCorrSAN [5] - 49.8 - - 256 x 256 28 1.5 2.1
SCorrSANyr [5] - 55.3 81.5 256 x 256 28 1.5 2.1
HCCNet (ours) 35.8 54.8 80.2 . 240 x 240 30 2.0 1.7

Table 3. PCK results on SPair-71k and PF-PASCAL in comparison to VAT and SCorrSAN. We compare HCCNet with SoTA
semantic matching methods of VAT [4] SCorrSAN [5], where HCCNet still exhibits competitive performance and the lowest FLOPs. While
SCorrSANwmr shows the best results, their main contributions are distillation and label densification schemes which are both complementary
to the model architecture used. SCorrSAN shows the results when the label densification and distillation schemes are unused. Therefore,
HCCNet is also expected to benefit significantly when these schemes are applied.

not its pretrained weights - we therefore take the PCK re-
sults from their paper, and report the latency, FLOPs and
memory using an unpretrained version of SCorrSAN. We
include VAT specifically for a comparative evaluation of
HCCNet on a lower PCK threshold of SPair-71k dataset (i.e.
at appox = 0.05). Table 3 presents the results.

It can be seen that HCCNet outperforms VAT on all
datasets at all thresholds, while incurring significantly lower
latency (approx. 3 times), memory (approx. 1.5 times)
and FLOPs (40 times). For SCorrSAN, we report two
results - one without both knowledge distillation and la-
bel densification (SCorrSAN), and the other with both
(SCorrSANyt). SCorrSAN exhibits notably lower FLOPs
compared to HCCNet thanks to their efficient spatial con-
text encoder module, albeit incurring higher FLOPs. While
their reported performance is considerably lower that those
of VAT or HCCNet, they can leverage the lightweighted-
ness of their SCorrsSAN model to perform knowledge dis-
tillation and label densification to largely boost their per-
formance (SCorrSANyT). We highlight that the knowledge
distillation and label densification scheme of SCorrSANyr
is complementary to the model architecture, and we ex-
pect a significant performance improvement once we apply
SCorrSAN’s training scheme to HCCNet.

Ablation study and analyses on SPair-71k. We conduct
the same set of ablative and analytical experiments in the
main paper, but on the SPair-71K dataset instead of PF-
PASCAL dataset.

Table 4 shows that our choice of using the intermediate
features extracted from conv3_x to conv5_x yields the
best results on the SPair-71k dataset as well, which is con-
sistent with the results on the PF-PASCAL dataset (Table 4
of the main paper).

Table 5 shows that our choice of using a slice size of
256 strikes the best balance between performance and ef-
ficiency, which is also consistent with the results on PF-
PASCAL from the main paper (Table 5 of the main paper).

conv used Sl(;a;r—ﬂk 1(11(6}:]1;1) FLOPs

'bbox G

2x 3x 4x 5x 0.05 (&)
X X X v 268 483 1.9 0.9

X X v x 329 51.1 1.9 1.3

X X v v 358 543 1.9 1.6

X v v v 358 54.8 2.0 1.7

v v v v 343 534 2.0 1.7

Table 4. Ablation study on the backbone bottleneck features
used. The results show that our current setting of using conv3_x
to conv5_x yields the best results.

o SPair7lk e mem.  FLOPs

Slice size @ avppox (ms) (GB) (G)
0.05 0.1

- 344 53.9 20 2.0 0.9
512 353 54.5 24 2.0 1.1
256 (Ours) 35.8 54.8 30 2.0 1.7
128 34.7 52.9 43 2.2 4.0
64 35.1 52.8 70 2.2 13.3
32 333 52.5 127 2.7 50.7

Table 5. Ablation study on the slice size used on the SPair-71k
dataset. The results show that our current setting of using the
chunk size of 256 yields the best trade-off between performance
and efficiency.

Table 6 shows that our choice of Tanh yields the best
results on the SPair-71k dataset compared to using ReLU
or Sigmoid, which is consistent with the results on the PF-
PASCAL dataset (Table 6 of the main paper).

Results when using HPF-selected layers for hypercol-
umn correlation construction. HPF [9] propose to repre-
sent images using hyperpixels that leverage a small number



SPair-71k

Activation function @ appox
0.05 0.1
RelLU 35.8 54.4
Sigmoid 35.4 54.0
Tanh 35.8 54.8

Table 6. Ablation study on the non-linear activation function
used. Using the Tanh activation function yields the best results,
over ReLU or Sigmoid activation functions.

SPair-71k PF-PASCAL
Method @ appox @ timg
0.05 0.1 0.05 0.1
HCCNet ypr 31.7 49.7 76.3 90.8
HCCNet (ours) 35.8 54.8 80.2 92.4

Table 7. PCK results on SPair-71k and PF-PASCAL when
using bottleneck layers selected by HPF only vs. ours. The
results show that using all bottleneck layers from conv3_x to
conv5_x yields significantly better results compared to using
HPF [9]-selected bottleneck layers for each dataset.

of relevant features selected among early to late layers of
the backbone feature extractor. Table 7 shows that using all
bottleneck layers from conv3_x to conv5_x yields sig-
nificantly better results compared to using HPF [9]-selected
bottleneck layers for each dataset, substantiating our design
choice over using HPF-selected bottleneck layers.

Additional feature slicing analysis on SPair-71k. To fur-
ther investigate the impact of channel aggregation on the
hypercolumn correlation, we visualize learned weight ma-
trices Wh;q and W, with four different groups denoted by
G € {30,62, 124, 248} in Fig. 3 when trained on the SPair-
71k dataset, as opposed to Figure 4 of the main paper which
illustrates the analysis of feature slicing when trained on
the PF-PASCAL dataset. We consistently observe that the
weight magnitudes are significantly higher (in yellow) at
deeper layers, particularly at conv4_x and conv5_x. As
we increase the number of groups utilized for feature slicing
(i.e. decrease the feature slice size), we find that the network
carries out fine-grained channel selection, as evidenced by
the weight visualization of Wy;4, verifying the efficacy of
performing position-wise channel aggregation on hypercol-
umn correlation using diverse visual cues. Compared to
the weight magnitudes of Wy;q4 that are focused on specific
groups, those of W, are relatively evenly dispersed in or-
der to effectively aggregate the information from the first
channel aggregation to provide a reliable refined correlation
map. The observations are overall consistent across the two
datasets, demonstrating the efficacy of HCCNet regardless
of the dataset it is trained on.
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Figure 3. Visualization of learned weight matrices of Wy €
RE*Phid (top) and Wy € RPWaX1 (bottom) under varying G =
D € {30,62,124,248}. Trained on SPair-71k.

Variance of multiple runs.

PF-PASCAL @ aipn,

Slice size 0.05 01
512 7784116 9194018
256 (Ours) 80.0:&0,49 92.2:&0,27

128 79.61064 92.040.21

Table 8. Results of HCCNet with varying slice size over mul-
tiple runs. Using the slice size of 256 yields consistently better
results over other sizes.

In Table 8, we report the PCK variance of our model over
three runs with different random seed, while varying the
slice size for our feature slicing scheme. The slice size of
256 still shows to be optimal, further verifying our design
choice of HCCNet.

3. Additional qualitative results and analysis.

In Figure 4 we qualitatively compare HCCNet with
TransforMatcher [6] on the SPair-71k dataset, where it can
be seen that HCCNet established more reliable and accurate
correspondences in comparison. Also, we further compare
HCCNet with TransforMatcher on image pairs with larger
variations in viewpoint/occlusion/truncation from the SPair-
71k dataset, where HCCNet shows stronger robustness and



reliability. Note that we reproduced TransforMatcher using
their released code to obtain these qualitative results. To en-
hance the visibility of the qualitative results for better com-
parison, the source images are TPS-transformed [2] to the
target images using the predicted correspondences to align
the common instances in each image pair.



TransforMatcher HCCNet (Ours)

Figure 4. Qualitative comparison of HCCNet against TransforMatcher [6]. Green lines represent ground truth correspondences, and
blue lines represent predicted correspondences. The source images are TPS warped to the target image using the predicted correspondences
for better comparison and visibility. Best viewed in electronics.



TransforMatcher HCCNet (Ours)

Figure 5. Qualitative comparison of HCCNet against TransforMatcher [6] under larger viewpoint/occlusion/truncation variations.
Green lines represent ground truth correspondences, and blue lines represent predicted correspondences. The source images are TPS
warped to the target image using the predicted correspondences for better comparison and visibility. Best viewed in electronics.
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