Supplementary Material for
MICS: Midpoint Interpolation to Learn Compact and Separated
Representations for Few-Shot Class-Incremental Learning

1. Implementation Details

Similarity metric: For all experiments, we used cosine
similarity as a similarity metric. During base training stage,
7 was set as 1/32 for minilmageNet and 1/16 for the others.
During incremental session, T is set as 1/16 for all datasets.

Optimizer and learning rate: We used SGD with mo-
mentum 0.9 and weight decay 5 x 10~* for all sessions.
For the minilmageNet case, we used a learning rate of 0.1
with a cosine annealing scheduler and a batch size of 128
for 700 epochs during the base training stage. During the
incremental sessions, we fixed the learning rate to 0.5 and
trained for 5 epochs with e = 0.3 for each session. For
the CIFAR-100 dataset, we used a learning rate of 0.1 with
a cosine annealing scheduler and a batch size of 256 for
600 epochs during the base training stage. During the in-
cremental sessions, we fixed the learning rate to 0.0005 and
trained for 10 epochs with € = 0.01 for each session. For
the CUB-200-2011 case, we used a learning rate of 0.001
for the feature extractor and 0.01 for the base classifiers.
Because we used the ImageNet pre-trained model for the
CUB-200-2011 dataset, we had to choose a small learning
rate for the feature extractor. We trained the model for 2,000
epochs with 256 batch-size. For the CUB-200-2011 case, it
is shown to be helpful to train the model with conventional
supervised training based on cross-entropy loss for the first
150 epochs, i.e., a warm-up process. After the warm-up
process, we train the model with the MICS objective. We
used a step-wise learning rate scheduler and learning rate
decaying at [1000, 1500] epochs with a decaying factor of
0.1 during the base training stage. During the incremental
sessions, we fixed the learning rate to 0.1 and trained for 20
epochs with e = 0.3 for each session.

Selection of mixup layers: For the selection of the mixup
layer [, we borrowed the strategy of [10], which firstly pro-
poses Manifold mixup. Specifically, we set the eligible
layers, i.e., where the manifold mixup can take place, and
then selected one layer randomly from the eligible layers
for each optimization step. We select the input layer as an

eligible layer. Also, the input of the down-sample layer for
each residual block is selected as an eligible layer.

Implementation of FACT without AutoAugment: For
the re-implemenation of FACT without strong autmentation
(denoted as FACT*), we referred to the experimental op-
tions specified in the original paper [15]. In all experiments,
we used cosine similarity with 7 = 1/16 and trained the
model for 600 epochs with 256 batch-size. We optimized
the model using SGD with momentum 0.9 and weight de-
cay 5 x 10~%. We changed 7 from {0.5, 0.9, 1.0} for in-
cremental inference and « from {0.5, 2} for sampling \. In
the case of n = 1.0, = 0.5, and the trade-off parameter
0.01, we obtained the best results. For the CIFAR-100 and
minilmageNet datasets, we used a cosine annealing sched-
uler with a learning rate 0.1. For CUB-200-2011, it was
helpful to use a small learning rate, so we used a step-wise
learning rate scheduler with a learning rate 0.005 and learn-
ing rate decaying at [50, 100, 150, 200, 250, 300] epochs
with decaying factor 0.25.

Additional implementation details: There is another ex-
perimental option that is necessary for the data loader: ‘drop
last’. The data loader with the ‘drop last’ option drops the
last non-full batch of the dataset so that we can get exactly
the same batch size for all optimization steps. If we do not
use this option for MICS, N, of the last iteration of each
epoch greatly differs from N, of the other iterations so that
training becomes unstable. We present all performance re-
sults on three datasets, i.e., minilmageNet, CIFAR-100, and
CUB-200-2011.

Performance Comparisions: We evaluated our method
MICS for all three datasets as shown in Tables 6, 7,
and 8 for CIFAR-100, minilmageNet, and CUB-200-2011
benchmark, respectively. The results confirm that MICS
achieves outperforming performance. In minilmageNet
and CUB-200-2011, MICS shows remarkable gains beyond
the runner-up methods, i.e., +2.43% and +1.27%, respec-
tively. For CUB-200-2011, MICS is slightly lower than



CIFAR-100 minilmageNet CUB-200-2011
Mixup Soft Labeling Midpoint | Final accuracy nVAR | | Final accuracy nVAR | Final accuracy nVAR |
v X X 51.59% 479.3 2.07% 1.691 x 10% 60.98% 100.7
v v X 51.59% 476.4 1.34% 1.746 x 10° 61.24% 101.911
v v v 52.94% 463.5 60.74% 421.4 61.37% 100
Table 1. Ablations for the components of MICS
CIFAR-100 minilmageNet CUB-200-2011
Mixup Method Final accuracy nVAR | | Final accuracy nVAR | | Final accuracy nVAR |
Mixup [14] 51.21% 468.4 58.77% 456.6 60.99% 101.4
CutMix [12] 50.64% 435.5 56.74% 491.5 61.01% 101.5
Manifold mixup (MICS) 52.94% 463.5 60.74% 421.4 61.37% 100
Table 2. MICS with various mixup methods.
minilmageNet bell-like and concave shapes of the two labeling functions
Labeling Policy e=0 e=03 assign an excessive probability value to the virtual class so
Gaussian (with 1(b)) 58.82%  40.66% that it results in the forgetting of the past classes
Exponential (with 1(c)) | 5991%  4.62%
MICS (with 1(a)) 60.54%  60.74% 2. MICS with Strong Augmentations

Table 3. MICS with various labeling policies

NC-FSCIL but it shows the best PD performance.

Effectiveness of MICS Components: To evaluate the ef-
fectiveness of MICS components, i.e., Manifold mixup,
Soft labeling policy, and Midpoint classifier, we conducted
ablation experiments on all three datasets. Table 1 presents
a comparative analysis of the results obtained by adding
these components one by one. The results indicate that
MICS with all components show the best performance in
accuracy and nVAR.

Mixup Methods: We evaluated the performance of the
Mixup Method, including Mixup of [14], Cutmix of [12],
and Manifold mixup of [10], on all three datasets. Table
2 shows that MICS performs best when combined with the
Manifold mixup method.

Label Mixing Policy: Mixup adopts a particular labeling
policy presented in Fig. 1(a). We test other possible la-
beling policies by using a smooth function. Fig. 1 shows
labeling functions based on (b) Gaussian and (c) Exponen-
tial functions. We test these two smooth labeling functions
by substituting the original labeling function of MICS. As
shown in Table 3, two variants denoted as ‘Gaussian’ and
‘Exponential’ perform worse than MICS. Specifically, they
are slightly inferior to the MICS case when the feature ex-
tractor is frozen during the incremental sessions, i.e., € = 0
case. However, they suffer from severe catastrophic for-
getting with fine-tuning, ¢ = 0.3. We conjecture that the

MICS with AutoAugment: AutoAugment of [I] is a
learning based augmentation policy searching algorithm. It
requires thousands of GPU time, even for a small dataset
such as CIFAR-100, but it is powerful for image recogni-
tion tasks. The original experiments for FACT of [15] user
AutoAugment as a default. Therefore, we drop the aug-
mentation for a fair comparison in the main tables. We also
tested MICS with AutoAugment. In Table 5, MICS with
AutoAugment, which is denoted as MICS+AA, shows bet-
ter performance than FACT with AutoAugment. The results
confirm that our method still performs FACT regardless of
the AutoAugment.

3. Influence of Backbone Architecture

Existing FSCIL methods, including TOPIC, F2M, CEC,
and FACT, utilize the ResNet architecture proposed in [2].
However, there are two key differences in the ResNet ar-
chitectures used by ALICE of [6] compared to these FSCIL
methods.

For the CIFAR-100 experiment, ALICE in [6] uses
ResNet-18 (11M) instead of ResNet-20 (0.27M), resulting
in 40 times more parameters than the existing FSCIL meth-
ods. For a fair comparison of the CIFAR-100 case, we tried
to re-implement ALICE with ResNet-20, but it deteriorated
the FSCIL performance significantly. Thus, we exclude the
results of ALICE in Table 6.

Additionally, for CIFAR-100 and minilmageNet, ALICE
selects different ResNet-18 hyper-parameters than those
proposed in [6]. Specifically, ALICE modifies the kernel
size and stride of the first convolution layer from 7 to 3 and
from 2 to 1, respectively, compared to the original ResNet-
18, and removes the max-pooling layer. Surprisingly, the
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Figure 1. Label mixing policies
Method Accuracy in each session (%) PD |
0 1 2 3 4 5 6 7 8
ALICET [6] 71.65 65.48 61.74 58.09 55.16 52.58 4990 4825 47.05 24.60
MICS (Ours) 78.72 73.75 6941 6591 6259 59.19 56.26 54.18 52.24 26.58

Table 4. Comparision results on minilmageNet using the original ResNet-18 architecture proposed in [2]. We re-implementation ALICE
(denoted as ALICE') because the results with the original ResNet-18 on minilmageNet are not givien in [6]

Method CIFAR-100 minilmageNet CUB-200-2011
FACT [15] 52.10% 50.49% 56.94%
MICS+AA 53.80% 52.91% 58.22%

Table 5. Last session accuracies with AutoAugment(AA)

FSCIL performance on minilmageNet improves when us-
ing this modified ResNet-18, even though it contains fewer
parameters than the original ResNet-18. Thus, we also
adopted the modified ResNet-18 architecture as ALICE for
the minilmageNet experiments. We followed the experi-
mental options specified in [6], but modified the learning
rate, scale factor, cosine margin, and testing method based
on our findings. Specifically, we obtained the best results
with a learning rate of 0.1, a scale factor of s = 16, a cosine
margin of m = 0, and without balanced testing, i.e., using
all base training images for calculating base class classifiers
(or prototypes). For a fair comparison, we re-implemented
ALICE using the original ResNet-18 in Table 4 (denoted
as ALICET) to exclude any effects of changed kernel size,
stride, and the existence of max-pooling layers. Despite
these modifications, the results in Table 4 show that MICS
still outperforms ALICE for the last session accuracies on
minilmageNet.

4. Boundary Thickness

Let us remind the definition of the normalized boundary
thickness in representation space For a C'-way classification
task with input, output and representation space, i.e., X, )
and H, respectively, let us denote the embedding function

as g(x) : X — M and the prediction function as f(h) :
H — [0,1]€.

Definition 1. (Normalized Boundary Thickness in Rep-
resentation Space) For o € (0, 1), the boundary thickness
O(f, «) in representation space H is defined as follows:

1
Of,0) = Egur o)) [/ AL f(h)] < o}dA| ()

where I{-} is an indicator function and A;; f(h) = f(h); —
f(h); is the gap between the probabilities for classifying
embedded feature h to class ¢ and j. Also, h;‘j = A\h; +
(1 — A)h;, where h; = g(x;) and h; = g(z;).

Based on the definition, our theorem is as follows:
Theorem 1. For all o € (0,1), MICS achieves larger

normalized boundary thickness than Manifold mixup, i.e.,
O (fuivup, &) < O(fumics, o, A), when the following holds:

A—A(L=A)>1—X—A(N). )

> Proof: Let us assume that a representation for the
Manifold mixup method with an arbitrarily small loss.
For the learned Manifold mixup-based representation, the
normalized boundary thickness in the feature space, i.e.,



O ( fmixup, @) can be computed as follows: When focusing a single side with A < 0.5 due to the sym-
metricity, to making eq. (8) smaller than Manifold mixup
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The equality (a) is from the definition of soft-labeling pol-
icy of Manifold mixup with assuming the number of layers
of the representation that maps input space X to the repre-
sentation space H is asymptotically increased, i.e., arbitrary
small loss can be achieved by Manifold mixup.

Let us assume a representation with an arbitrarily small
loss for the MICS-based labeling function. For MICS,
which considers a virtual class from class mixup between
a pair of original classes, the soft-labeling of the original
class becomes A(\) and A(1 — X) for 0 < A < 1. There-
fore, the class with probability A for Manifold mixup de-
creases to A(1 — \) for MICS, where the gap is A, =
A — A(1 — )), and another class with probability 1 — X
for Manifold mixup decreases to A(\) for MICS, where the
gapis A, =1— X — A()\). When A, > A,, the probabil-
ity gap between two classes always decreases than MICS,
which completes the proof. In this case, we do not consider
the probability of the virtual class in computing the bound-
ary thickness which strongly makes the thickness of MICS
to be larger than that of Manifold mixup.

Corollary 1.  For all « € (0,1), MICS with linear
Sfunction A(-) shows larger normalized boundary thickness
than Manifold mixup when the following holds: v > 0.25.
> Proof: For MICS, A;; f(h};) is formulated as follows:

Aisf(RG) = AN — max [A(L = A), 1 — A(X) — A(1 — )].
@)
By taking the definition of A(A) for MICS in the main pa-
pér,

Aijf(h:fj) = max (%, O)

(A=)
1=

A=7)
(1-7)
3)

1—-X—
,O),lfmax(H ,O).

— max (max (

,0) — max(

On the other hand, Manifold mixup shows A;; f (hz‘j) =
1 — 2)\. When the MICS’s eq. (8) become smaller than
that of Manifold mixup, MICS shows enlarged boundary
thickness. Here, we take the probability of virtual class into
account when computing the confidence difference, which
is for achieving the weak condition for the larger thickness.



Method Accuracy in each session (%) PD |

0 1 2 3 4 5 6 7 8
Finetune 69.05 4186 379 419 385 333 214 231 206 6699
Baseline 69.05 65.52 61.66 57.84 55.04 5253 5097 49.16 4735 21.7
Rebalance [3] 64.10 53.05 4396 3697 31.61 2673 2123 1678 13.54 50.56
iCaRL [7] 64.10 5328 41.69 34.13 2793 2506 2041 1548 13.73 50.37
TOPIC [9] 64.10 55.88 47.07 45.16 40.11 3638 3396 31.55 29.37 34.73
FSLL [5] 64.10 55.85 51.71 4859 4534 4325 4152 39.81 38.16 2594
CEC[13] 73.07 68.88 6526 61.19 58.09 5557 5322 5134 49.14 2393
F2M [8] 7145 68.1 6443 60.8 5776 5526 5353 5157 4935 22.10
FACT* [15] 73.68 6839 6391 5994 56.17 5324 50.6 48.14 4591 27.77
CLOM [16] 7420 69.83 66.17 6239 59.26 5648 5436 52.16 5025 2395
NC-FSCIL [11] 82.52 76.82 73.34 69.68 66.19 62.85 60.96 59.02 56.11 2641
WaRP [4] 80.31 75.86 71.87 67.58 6439 61.34 59.15 57.10 5474 25.57

MICS (Ours) 78.18 73.49 6897 65.01 6225 5934 5731 5511 5294 2524

Table 6. The evaluation for the FSCIL benchmark with the CIFAR-100 for 5-way 5-shot setting. MICS uses € = 0.01. * indicates FACT
of [15] without AutoAugment of [1] for a fair comparison.

Method Accuracy in each session (%) PD |
0 1 2 3 4 5 6 7 8
Finetune 69.37 4741 11.00 848 479 6.00 459 541 6.72  62.65
Baseline 69.37 6434 6033 5723 54.18 51.35 4887 47.08 4556 23.81
Rebalance [3] 61.31 47.80 39.31 3191 2568 21.35 18.67 17.24 14.17 47.14
iCaRL [7] 61.31 4632 4294 37.63 3049 24.00 20.89 18.80 17.21 44.10
TOPIC [9] 61.31 50.09 45.17 41.16 3748 3552 32.19 2946 2442 36.89
FSLL [5] 6648 61.75 58.16 54.16 51.10 48.53 46.54 4420 4228 24.20
CEC [13] 72.00 66.83 6297 5943 56.70 53.73 51.19 49.24 47.63 24.37
F2M [8] 72.05 6747 63.16 59.70 56.71 53.77 51.11 4921 47.84 2421
FACT* [15] 71.78 66.54 6239 5896 5580 52.65 49.82 47.78 4580 2598
CLOM [16] 73.08 68.09 64.16 6041 5741 5429 5154 49.37 48.00 25.08
NC-FSCIL [11] 84.02 76.80 72.00 67.83 6635 64.04 6146 59.54 5831 2571
WaRP [4] 7299 68.10 6431 61.30 58.64 56.08 5340 51.72 50.65 22.34
ALICE [0] 80,6 70.6 674 645 625 600 578 568 557 249

MICS (Ours) 8440 79.48 75.09 7140 68.89 66.16 63.57 61.79 60.74 23.66

Table 7. The evaluation for the FSCIL benchmark with the minilmageNet dataset for 5-way 5-shot setting. MICS uses € = 0.3. * indicates
FACT of [15] without AutoAugment of [ 1] for a fair comparison.



Method Accuracy in each session (%) PD |

0 1 2 3 4 5 6 7 8 9 10
Finetune 7755 821 1058 6.06 549 539 481 3.69 277 268 264 7491
Baseline 68.68 52.65 48.61 44.16 36.62 29.52 27.83 2626 24.01 23.89 21.16 47.52
Rebalance [3] 68.68 57.12 4421 28.78 26.71 25.66 24.62 2152 20.12 20.06 19.87 48.81
iCaRL [7] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 2626 24.01 2389 21.16 4752
TOPIC [9] 68.88 62.49 5481 4999 4525 4140 3835 3536 3222 2831 2628 426
FSLL [5] 7277 6933 6551 6266 61.1 58.65 57.78 57.26 55.59 5539 5421 18.56
CEC[13] 75.85 7194 68.50 63.50 6243 5827 57.73 5581 54.83 5352 5228 2357
F2M [§] 77.13 7392 7027 6637 6434 61.69 60.52 59.38 57.15 56.94 55.89 21.24
FACT* [15] 7983 7459 71.10 6626 6633 6293 62.09 6121 58.88 5833 5724 22.59
CLOM [16] 79.57 76.07 7294 69.82 678 6556 6394 6259 60.62 60.34 59.58 19.99
NC-FSCIL [11] 80.45 7598 7230 7028 68.17 65.16 6443 6325 60.66 60.01 5944 21.01
WaRP [4] 77.74 74.15 70.82 6690 6501 62.64 6140 59.86 5795 57.77 57.01 20.73
ALICE [6] 774 727 706 672 659 634 629 619 605 60.6 60.1 17.3

MICS (Ours) 7877 7537 7230 68.72 6745 6540 6472 6339 61.89 61.89 6137 1740

Table 8. The evaluation for the FSCIL benchmark with the CUB-200-2011 for 10-way 5-shot setting. MICS uses ¢ = 0.3. * indicates
FACT of [15] without AutoAugment of [1] for a fair comparison.
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