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A. Semantic Segmentation: More Examples

In Figs. 7 to 9, we show additional qualitative examples
for the downstream task of semantic segmentation. As dis-
cussed in Sec. 4.2 of the main paper, MEM-pretrained mod-
els tend to exhibit improved segmentation of fine-grained
scene structures, such as pedestrians and lamp poles.

B. Convergence Curve

In Fig. 10, we show that the convergence speed of fine-
tuning is considerably higher for MEM than from ViT-from-
scratch. Recall also that the top-1 accuracy of the finetuned
model is substantially higher than that of the ViT-from-
scratch baseline, e.g. +18.66% on N-Caltech101 in Tab. 2.

C. Self-Supervised Baselines

We experiment with another baseline by reconstructing
frames from events using E2VID [74] to further verify our
design choices. We analyze the finetuning of both MAE
and MEM on top of E2VID reconstructions in Tab. 7. Both
methods are strong baselines, but directly using MEM on
the raw event histograms is more effective. Moreover, the
problem with a two-stage E2VID pipeline is that it uses sig-
nificantly more compute and storage. Another serious dis-
advantage is that the classifier uses reconstructed images – a
lossy transformation of the raw event data, which limits the
accuracy and requires domain-specific labeled training data.
Analogous to Tab. 6 in the main paper, we investigate two
versions of MAE for completeness: E2VID+MAE-entire-
hist, where the MAE loss is applied to the entire recon-
structed histogram (our proposed modification for event his-
tograms); and E2VID+MAE-only-mask, where the MAE
loss is only applied to the masked patches (cf . [67]). While
our modified version yields a significant improvement when
pretraining on raw event histograms (cf . Tab. 6), it seems to
be slightly beneficial to adopt the original formulation for
reconstructed frames.

Method N-Caltech101 N-Cars

FT LP FT LP

E2VID+MEM 76.86 56.53 94.53 90.88
E2VID+MAE-entire-hist 77.45 58.70 93.09 88.33
E2VID+MAE-only-mask 78.56 60.22 94.39 89.51

MEM (ours) 85.60 71.20 98.55 97.58

Table 7. E2VID baselines. Top-1 accuracy for finetuning (FT) and
linear probing (LP) on N-Caltech101 and N-Cars.

Method N-Caltech101 N-Cars

MEM + LP 71.20 97.58
MEM-NImNet + LP 68.19 89.82
Random Init + LP 25.34 75.94

ViT-from-scratch 66.94 92.71

Table 8. Top-1 accuracy of linear probing (LP) for MEM pretrain-
ing on N-Caltech101 and N-Cars. Random Init + LP is the LP
accuracy of a randomly initialized ViT.

D. Linear probing (LP)

We also evaluate linear probing results with MEM pre-
training. The conclusions from the main text still hold for
LP: MEM-pretrained models achieve higher top-1 accuracy
than ViT-from-scratch. We report top-1 LP accuracy on N-
Caltech101 and N-Cars in Tab. 8. Compared to finetun-
ing, LP benefits more from longer pretraining (cf . [67, Fig.
7]). We trained our model for 75 epochs on N-ImageNet,
which is sufficient for standard finetuning, but proves to be
too short for LP. Additionally, LP requires careful hyperpa-
rameter tuning (cf . [67, A.1 and Tab. 10]). While we used
here the same hyperparameters for MEM as in finetuning,
we could substantially improve upon the initial LP results
by using new hyperparameters and removing regularization,
following the insights of MAEs [67].
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(a) ViT-from scratch (b) MEM (ours) (c) Ground truth

Figure 7. Semantic segmentation examples: (a) ViT-from-scratch, (b) MEM (ours), (c) the ground truth. MEM recovers the pedestrians
(the right image half, 1st, 3rd, and 4th row), as well as the lamp pole (the right image half, 2nd, 3rd, and 4th row) more reliably.

E. Ablation of Input Representation

Event histograms already encode temporal information
implicitly since they consider up to Nmax events per his-
togram and accumulate the polarities into separate chan-
nels. As discussed in Sec. 4.6, we did not observe a signifi-
cant benefit by explicitly including temporal information in
the input, such as the event timestamps. In fact, as Tab. 9
shows, including this information into the event histograms
as a third channel leads to slightly worse top-1 classification
accuracy – compare lines (i) and (ii).

To further investigate the importance of the temporal di-

mension for classification, we employ an 8-channel input
histogram as the input. In contrast to our default 2-channel
histograms, which collapse all recent events into two chan-
nels, this 8-channel histogram distributes the stream of Nmax
events into four equally spaced chunks of time and com-
putes the histogram per chunk (similar to voxel grids [74]).
Compared to simply using the latest timestamp in the third
channel, this representation encodes the temporal informa-
tion in more fine-grained manner. However, it does not
yield a consistent advantage over our 2-channel baseline, as
shown in lines (iii) and (iv) of Tab. 9. While the 8-channel
representation somewhat improves the top-1 accuracy on N-



(a) ViT-from scratch (b) MEM (ours) (c) Ground truth

Figure 8. Semantic segmentation examples: (a) ViT-from-scratch, (b) MEM (ours), (c) the ground truth. MEM recovers the pedestrians
(the right image half, 1st - 4th row), as well as the lamp pole (the right image half, 2nd and 4th row) more reliably.

Cars, the result is considerably worse on N-Caltech101.

The marginal benefit of the more explicit temporal en-
coding, as demonstrated in these experiments, has an intu-
itive explanation if we consider the underlying task – ob-
ject classification. Semantic meaning is easily accessible
from the spatial context, such as object shape, rather than
the temporal distribution of brightness changes, which the
more explicit temporal representations provide.

F. Reconstruction and Token Visualization

We visualize additional codebook vectors in Fig. 11. We
observe that codebook vectors, which have a fixed index,
tend to exhibit recurring shape characteristics and a con-
sistent preference for polarity (e.g., either positive or neg-
ative or an equal share of both). The most common code-
book vectors are completely blank since the event histogram
is sparsely populated with event count values. Due to re-
dundancy, we do not visualize these blank codebook vec-
tors. Although all codebook vectors are fixed, the decoder
adapts each patch to its surroundings to form a coherent im-



(a) ViT-from scratch (b) MEM (ours) (c) Ground truth

Figure 9. Semantic segmentation examples: (a) ViT-from-scratch, (b) MEM (ours), (c) ground-truth annotation map. MEM pretraining
recovers the pedestrians (the right image half, 1st - 4th row), as well as the lamp pole (the left image half, 2nd - 4th row) more reliably.

age. Hence, the visualized examples of each decoded code-
book vector show some appearance variation (column-wise
in Fig. 11). All visualized codebook vectors are rendered
using the test set of N-Cars [47].

Complementing Fig. 4, Fig. 12 illustrates the reconstruc-
tion of masked patches during pretraining on all datasets
used in this work. As we discuss in Sec. 4.5, the MAE pre-
training task can also be employed on event histograms (in
contrast to the original MAE paper [67]). However, it re-
quires the loss to be formulated on the entire histogram. We
found the reconstructions from eMAE, which are visualized

in Fig. 13, to be not as sharp as for MEM.

G. Implementation Details
As discussed in Sec. 4, our MEM pretraining, as well as

the baselines ViT-from-scratch, ViT-1k, and ViT-21k, share
the same implementation. As detailed next, we make a sig-
nificant effort to ensure strong baseline performance by us-
ing best-practice training techniques.

ViT Architecture We use ViT-Base described in [14]
with patch size 16× 16. It consists of 12 layers and has 12



0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000

30

40

50

60

70

80

Epoch

To
p-

1
ac

cu
ra

cy
,%

(t
es

t)

MEM (ours)
ViT-from-scratch

Figure 10. Finetuning accuracy vs. epochs on N-Caltech101 [47]. With our proposed pretraining (MEM), the accuracy increases much
faster. It reaches a higher final accuracy of 85.60% compared to finetuning without pretraining (ViT-from-scratch), where the final accuracy
is only 66.94%. Both the pretraining and the finetuning tasks use the entire N-Caltech101 train dataset.
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Figure 11. Additional examples of decoded codebook vectors with the codebook indexes of 490, 804, 1041, 1964, 3128, 4428, 5910, and
8058. Although all codebook vectors are fixed, the decoder adapts each patch to its surroundings to form a coherent image. Observe that
each codebook index corresponds to a specific visual feature, e.g., a red horizontal line at the bottom of the patch (4228) or a round mixture
of red and blue polarity (1964). The codebook size is 8092. These visualizations are rendered from the test set of N-Cars [47].
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Figure 12. Additional masked patch predictions. From left to right: We visualize the masked input histograms, the reconstructions during
pretraining, and the ground truth for N-Caltech101 [37] (top), for N-Imagenet [28] (middle) and for N-Cars [47] (bottom). We observe that
the ground truth can be recovered even if large parts of the input to the ViT are masked. The ViT predicts the tokens for all masked patches,
which are then decoded into the predicted event histogram by the decoder of the dVAE. These visualizations are rendered from the test set.

heads in the self-attention layers. The feature size is 768,
maintained by MLPs with 3072 hidden units. We add a lin-
ear projection on the ViT features during pretraining, which
outputs the visual tokens. We discard this linear projection
during finetuning and train a new linear layer for classifica-
tion. We employ relative positional encoding [14].

Hyperparameters We report hyperparameters for dVAE
in Tab. 11, pretraining in Tab. 12, and finetuning in Tab. 13.
As discussed in Sec. 3.2, gradient clipping is a vital hyper-
parameter. In Tab. 10, it can be seen that without gradi-
ent clipping, the accuracy on N-Caltech101 and N-Cars is
worse than the baseline ViT-from-scratch. Hence, gradient
clipping is essential to employ MEM pretraining on sparse
event histograms successfully. Note that gradient clipping



Ablation N-Caltech101 N-Cars

(i) MEM 85.60 98.55
(ii) w/ timestamps (3rd chan.) 84.90 98.10

with 33% pretrain steps:
(iii) MEM (2 channels) 81.17 95.16
(iv) 8-channels 79.70 95.84

Table 9. A study of alternative input representations on N-
Caltech101 [73] and N-Cars [75]. As the baseline, here we use
2-channel histograms (see Sec. 4.6) of size 224 × 224, patch size
16, masking ratio 50%, RandAugment [66] and gradient clipping
(see Tabs. 11 and 12 for other hyperparameters).

Ablation N-Caltech101 N-Cars

(i) MEM 85.60 98.55
(ii) ViT-from-scratch 66.94 92.71
(iii) MEM w/o grad. clip. 22.87 90.73

Table 10. Ablation of gradient clipping for dVAE and pretraining
stage on N-Caltech101 and N-Cars. Gradient clip values are in
Tab. 11 and Tab. 12. Gradient clipping is essential to employ MEM
pretraining on sparse event histograms. Note that gradient clipping
is not employed in the RGB setting [65, 67].

is not used in the RGB setting [65, 67].

G.1. Details on Event Preprocessing

After loading all events for a given sample (e.g., accu-
mulated over 300ms in N-Caltech101), we slice the events
in time by randomly selecting one contiguous batch com-
prising up to Nmax = 30, 000 events. During training, we
perform (i) a random flip of all event polarities (with prob-
ability p = 0.5); (ii) a random horizontal flip (with proba-
bility p = 0.5); and (iii) random shifts (per event) by ∆x
and ∆y of x-coordinates and y-coordinates using uniform
sampling, i.e. ∆x ∼ U(−15, 15) and ∆y ∼ U(−15, 15).

We accumulate the augmented events into a two-channel
histogram. For N-Caltech101 and N-Cars, we resize the his-
tograms to spatial resolution 224 × 224. For N-ImageNet,
we resize the histogram to 256 × 341 and randomly crop
the image to 224 × 224. Next, we remove “hot pixels”, a
variant of noise specific to event cameras, which manifests
as a continuously triggering event [68]. We define a pixel
as a “hot pixel” if its event count is ten standard deviations
above the mean value in the event batch. We normalize the
histogram values to [0, 1]. Lastly, during training, we per-
form RandAugment [10] with two operations and a magni-
tude of 20. The three stages of MEM (dVAE, pretraining,
and finetuning) share the same input preprocessing (i.e., the
event histogram).

G.2. Datasets

We use the official train and test splits of N-ImageNet
[28] and N-Cars [47] and DSEC-Semantic [19]. For N-
Caltech101 [37], we randomly split the data into 80% train-
ing data and 20% test data. We ran 5-fold cross-validation
to confirm that all random splits yield approximately the
same result on N-Caltech101. The top-1 accuracy on the
test sets in these experiments were 84.6%, 84.7%, 85.3%,
85.6% (reported in the main text), and 85.8%.
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Hyperparameter N-ImageNet [28] N-Caltech101 [37] N-Cars [47]

Optimizer Adam [70] Adam [70] Adam [70]
Optimizer momentum β1, β2 = (0.9, 0.999) β1, β2 = (0.9, 0.999) β1, β2 = (0.9, 0.999)
Learning rate 1e-3 2e-4 2e-4
Learning rate schedule exponential (0.99) exponential (0.99) exponential (0.99)
Learning rate layer decay 0.98 0.98 0.98
KL weight 1e-10 1e-10 1e-10
Batch size 512 192 192
Grad clip 1e-2 1e-2 1e-2
Epochs 50 300 300

Table 11. Hyperparameters for the dVAE.

Hyperparameter N-ImageNet [28] N-Caltech101 [37] N-Cars [47]

Optimizer AdamW [72] AdamW [72] AdamW [72]
Optimizer momentum β1, β2 = (0.9, 0.95) β1, β2 = (0.9, 0.95) β1, β2 = (0.9, 0.95)
Learning rate 1e-4 5e-4 3e-4
Learning rate schedule cosine decay [71] cosine decay [71] cosine decay [71]
Warmup steps 1000 1000 1000
Weight decay 0.05 0.05 0.05
Batch size 512 512 384
Grad clip 30 30 30
Epochs 75† 3000 1000‡

Table 12. Hyperparameters for pretraining. †Cosine scheduler set for 300 epochs, but for computational reasons, only training for 75
epochs. ‡ Cosine scheduler set for 3000 epochs, but only training for 1000 epochs.

Hyperparameter N-ImageNet [28] N-Caltech101 [37] N-Cars [47]

Optimizer AdamW [72] AdamW [72] AdamW [72]
Optimizer momentum β1, β2 = (0.9, 0.95) β1, β2 = (0.9, 0.95) β1, β2 = (0.9, 0.95)
Learning rate 1e-3 4e-3 5e-4
Learning rate schedule cosine decay [71] cosine decay [71] cosine decay [71]
Learning rate layer decay 0.65 0.65 0.65
Warmup epochs 20 20 20
Weight decay 0.3 0.05 0.05
Drop path 0.1 0.1 0.1
Dropout 0.0 0.1 0.1
Batch size 1024 1024 1024
Epochs 200† 300 300

Table 13. Hyperparameters for finetuning. †Cosine scheduler set for 300 epochs, but for computational reasons, only finetuning for 200
epochs. We report the exponential moving average accuracy on N-Imagenet with a decay factor of 0.9999.
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Figure 13. Additional masked patch predictions with the MAE loss (eMAE-entire-hist, see Tab. 6). From left to right: We visualize the
masked input histograms, the reconstructions during eMAE-entire-hist pretraining, and the ground truth for N-Caltech101 [37] (top) and
for N-Cars [47] (bottom). The MAE pretraining tasks struggles to recover sharp reconstructions, compared to MEM (cf . Fig. 12). We
employ the default values of the MAE paper [67], i.e. a masking ratio of 75%, and random masking.
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