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1. Introduction of Supplementary Material
In this supplemental document, we experimentally sub-

stantiate infeasibility of optimization-based GAN inversion
approaches and suitability of our learning-based GAN in-
version design in Sec. 2. We offer a detailed overview of the
various architectural elements within the network – includ-
ing the feature fields, the neural renderer, and the discrimi-
nator, all discussed in Sec. 3. Furthermore, we bring forth
additional qualitative findings on datasets such as CelebA-
HQ [2], CompCar [3], and AFHQ [1].

2. Comparison with Optimization-based GAN
inversion Approach

We observe the limitations of optimization-based GAN
inversion approaches for this specific application. Gener-
ally, optimization-based GAN inversion methods tend to re-
store target images more accurately, albeit at a slower speed.
However, in the setting of 3D-aware generative pipeline,
optimization-based methods are contingent upon the avail-
ability of camera parameter for training images to align the
viewing direction of the restored image. For evaluation,
we performed optimization-based GAN inversion using a
gradient descent approach with the Adam optimizer. Our
experimental evidence, as depicted in Fig. 1, shows that
optimization-based method does not properly restore the
input images. In contrast, our model operates effectively
without the need for camera parameters.

Furthermore, we conduct additional experiments with
LPIPS [4] metric for evaluating the input preservation. The
LPIPS measures perceptual similarity using AlexNet pre-
trained with ImageNet. We compared 1000 pairs of the
generated images and the corresponding target images. As
shown in Tab. 1, our learning-based GAN inversion method
is superior to the optimization-based GAN inversion ap-
proaches for all datasets.
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3. Network Architectures

In this section, we provide the details of network archi-
tecture: feature fields, neural renderer, and the discriminator
as exhibited in Fig. 2 and Fig. 3.

Figure 2 presents a detailed overview of the architec-
ture underpinning the feature fields and the neural ren-
derer. The construct of the feature fields is parameter-
ized via multi-layer perceptrons, colloquially referred to as
MLPs, a feature vividly displayed in subfigure (a). This
setup maps a three-dimensional point, the viewing direc-
tion, along with latent codes into a volume density and a
feature. Subfigure (b) unravels the process behind the neu-
ral renderer blocks, demonstrating how these blocks trans-
form a volume-rendered feature image, into the ultimate
synthesized image.

Figure 3 explicates the architecture of the discriminator
network, emphasizing the steps involved in processing the
input image. Initially, the image is subjected to a series of
residual convolution blocks, which are fortified with spec-
tral normalization. This is followed by the execution of an
average pooling operation. The process culminates with the
derivation of the output probability, which is obtained post
the final linear layer, again, involving spectral normaliza-
tion.

4. Additional Qualitative Results

Figure 4, 5, and 6 deliver additional examples on
CelebA-HQ [2], AFHQ [1], and CompCar [3] datasets.

We embark on rigorous evaluation of our model using a
diverse range of input images sourced from varied datasets.
With the CelebA dataset, we assess the model’s perfor-
mance using faces of different genders, ages, and ethnic
backgrounds, all of which yield impressive quality in out-
put. In the context of the AFHQ dataset, we utilize images
from a variety of categories as input for our testing phase.
It is worth noting that these results, encompassing distinct
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Figure 1. Qualitative experiments of optimization based method.

Method
Cats CelebA(HQ) CompCar AFHQ

1282 2562 1282 2562 1282 2562 1282 2562

Optimization 0.46 0.43 0.34 0.40 0.56 0.53 0.48 0.48

Learning(ours) 0.22 0.24 0.23 0.25 0.40 0.43 0.23 0.26

Table 1. Input preservation comparison to optimization-based with
LPIPS(↓) [4]. Optimization and Learning denote optimization-
based GAN inversion and learning-based GAN inversion, respec-
tively

categories, are obtained using a single model with differ-
ent conditional vector inputs, thereby highlighting the large
capacity of our model.

The CompCars dataset allows us to experiment with 360-
degree image generation using real image inputs represent-
ing various car models, colours, and camera poses. It is im-
portant to note that a significant advantage of our model is
the freedom it provides in the longitudinal movement of ob-
jects, along with the capacity to alter the background. This
flexibility underpins the model’s capacity for highly con-
trollable image synthesis, an attribute that holds immense
potential for a wide array of applications.

Figure 7 and 8 exhibit additional style-mixed 3D im-
age synthesis examples on CelebA-HQ and AFHQ datasets.
The latent vectors of the style-mixed images are obtained
from two distinct source image. The results signify that our
inverter successfully disentangle features of source images.
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Figure 2. Architecture of the feature fields and neural renderer. The feature fields are parameterized with multi-layer perceptrons (MLPs)
as shown in the (a). The 3D point x, viewing direction d, and latent codes zs, za are mapped into a volume density σ and feature f. In (b),
the neural renderer blocks depict the transformation of the volume-rendered feature image F into final synthesized image Î . UPNN and
UPBL symbolize the nearest neighbour upsampling and bilinear upsampling, respectively.

Figure 3. Architecture of the discriminator. The input image is processed through residual convolution blocks fortified with spectral
normalization, and an average pooling operation. The output probability is derived after the final linear layer with spectral normalization.



Figure 4. Supplementary results with 2562 CelebA-HQ image inputs.



Figure 5. Supplementary results with 2562 AFHQ image inputs.



Figure 6. Controllable image synthesis with 1282 CompCars image inputs.



Figure 7. Multi-view images with style mixing of two CelebA-HQ input images.



Figure 8. Multi-view images with style mixing of two AFHQ input images.


