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A. Analyzing temporal filters
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Figure A. Cartesian coordinates of
physically interpretable axes.

In Sec. 2.1, we show the distribution of temporal filters which are L2-normalized 3-d
vectors thus being distributed on a sphere. For ease of analyzing the distribution, we
construct Cartesian coordinates composed of physically interpretable axes as shown in
Figure A; the average vector ∝ [1, 1, 1]>, the 1st differential vector ∝ [−1, 0,+1]> and
the 2nd differential vector ∝ [−1,+2,−1]>. In the main manuscript, Figure 1 shows
the distribution by projecting the temporal-filter samples from a sphere into a plane de-
picted by gray color in Figure A. In order to visual further details of the temporal filter
distributions, Figure B shows the distributions on two types of planes which are perpen-
dicular to each other; one is spanned by the average and 1st-differential vectors, and the
other is by the 1st- and 2nd-differential vectors. Note that as the signs of temporal filters
can be arbitrarily given in SVD (1), we plot both the temporal filter ui and its opposite
one −ui for describing the distribution in Figure 1&B. The visualization in Figure B further supports our findings discussed
in Sec. 2.1.

B. Detailed procedure to train models
We detail the training and evaluation procedure on respective datasets in Table A. To train 3D-CNNs, we apply SGD

optimizer with momentum of 0.9, weight decay of 0.0005 and the other parameters shown in Table A to video sub-clips of
32× 224× 224 sampled by random cropping in a spatio-temporal domain. For evaluation, we extract several clips from an
input video sequence at fixed positions. Video sub-clips of 32 × 256 × 256 are uniformly sampled in the spatio-temporal
domain with the numbers of clips shown in Table A to cover whole a video volume. The classification scores are summed up
across those clips to produce the final classification.

Table A. Details of training procedures on respective datasets.

Dataset SSv2 [1] Mini-SSv2 Kinetics-400 (K400) [2] Mini-K400

Training samples 168,913 81,663 241,181 121,802
Test samples 24,777 11,799 19,877 9,934

Classes 174 87 400 200

batch size 32 24 32 32
initial learning rate 0.01 0.01 0.01 0.01

learning rate schedule cosine decay ×0.1 at 15, 30-epochs cosine decay ×0.1 at 15, 30-epochs
training epochs 100 35 100 45

Evaluation clips 3(spatial)× 3(temporal) = 9 clips 3(spatial)× 10(temporal) = 30 clips
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(a) Pretrained on SSv2 dataset: on a plane of average and 1st differential (top), and of 1st and 2nd differential filters (bottom).
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(b) Pretrained on K-400 dataset: on a plane of average and 1st differential (top), and on 1st and 2nd differential filters (bottom)

Figure B. Distributions of the primary temporal filters embedded in I3D-ResNet-50 which is pretrained on (a) SSv2 [1] and (b) K-400 [2]
datasets. The temporal filters are normalized in unit L2 norm to distribute on a sphere (Figure A).



C. Effective receptive field
Following [3], we measure the effective receptive field of a 3D-CNN as follows.

1. Randomly draw an input volume by I = {Icthw ∼ N (0, 1)}3,32,224,224c,t,h,w ∈ R3×32×224×224.

2. Inject gradients to the center neuron on the last feature map. Let X ∈ R2048×32×7×7 be the last feature map produced
by I3D-ResNet-50 and W ∈ R2048×32×7×7 be a binary map which activates at the center neuron; Wcthw = 1 for
(t, h, w) = (17, 4, 4), ∀c and Wcthw = 0 for the others. Thereby, we can design a loss of ` = 〈W ,X〉, the element-
wise multiplication and summation, i.e., inner-product between tensors.

3. The gradients GI on an input I are computed through back-propagation based on the loss `.

4. Repeat the above three steps 10 times and average the gradient values to measure the effective receptive field Ḡ =
[EI(G2

I)]
1
2 where square and square-root operates on tensors in an element-wise manner.
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