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This document supplements our work SGRec3D: Self-
Supervised 3D Scene Graph Learning via Object-Level
Scene Reconstruction by providing (i) reproducibility infor-
mation on our implementation and training details (Sec. 1),
(ii) more details on the dataset and its pre-processing
(Sec. 2), (iii) further ablations on our architecture design
(Sec. 3), (iv) a direct qualitative comparison between our
method with and without pre-training for 3D scene graph
prediction (Sec. 4), (v) additional 3D scene graph predic-
tions using our method(Sec. 5), (vi) additional scene gener-
ations from our method (Sec. 6),

1. Reproducibility Details
1.1. Network

Our encoder consists of two PointNets which pass fea-
tures of size 256 to a 4-layer GCN, where g1(·) and g2(·)
are composed of a linear layer followed by a ReLU acti-
vation. Additionally, the bounding boxes of the object in-
stances are encoded via a linear layer and are appended to
the initial features from the PointNets. The encoder GCN is
followed by object and predicate prediction MLPs, consist-
ing of 3 linear layers with batch normalization and ReLU
activation.

During pre-training, the resulting features are fed into
the decoder part of our network, which consists of a 3-layer
GCN with the same g1(·), g2(·) MLPs. After the graph
convolution, the GCN features are passed to two different
heads. One is a Box-Head consisting of a 3-layer MLP with
batch normalization and ReLU activation, outputting 7 box
parameters (w, l, h, cx, cy, cz, θ). The other is a Shape-MLP
with 3 linear layers, batch normalization and ReLU activa-
tion, outputting a 1024-dimensional shape latent code. The
original object point clouds are additionally fed into the en-
coder of a pre-trained AtlasNet, which produces the target
shape code for our model.

1.2. Training

The model is trained with a batch size of 4, using an
Adam optimizer with a learning rate of 0.0001 and a reduce-
on-plateau learning rate scheduler. The pre-training is per-
formed until the validation loss converges. We pre-train
our method for approximately 35 epochs until the validation
loss for the reconstruction task converges. Similarly, during
fine-tuning, we monitor the validation loss. Once the valida-
tion loss converges, which occurs after ˜20 epochs, we eval-
uate the scene graph prediction performance by calculating
the metrics introduced in the paper on the validation set.
Further training results in overfitting, indicated by the vali-
dation loss for both object prediction and predicate predic-
tion. Overfitting occurs faster for the non-pre-trained model
after around ˜15 epochs. However, validation loss and eval-
uation metrics are worse than our pre-trained model. Fur-
ther training with smaller learning rates does not improve
the results.

The training is performed on 2 NVIDIA Tesla V100
GPUs with 32 GB Memory.

1.3. Losses

During pre-training we use the following reconstruction
loss for all objects i ∈ N in the scene

Lrec =
1

N

N∑
i=1

(
η1∥b̂i − bi∥1 + η2CE(θ̂i, θi) + η3∥êi − ei∥1

)
(1)

where b̂i, bi are the predicted and ground truth bounding
box parameters respectively, θ̂i, θi the predicted and ground
truth yaw angle of the bounding box and êi the predicted
shape code from our model, while ei is the shape code
provided by AtlasNet. We choose η1 = 0.4, η2 = 0.2,
η3 = 0.4.

During fine-tuning, we use the following loss for nodes
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Figure 1. Qualitative evaluation of the effects of pre-training on 3DSSG. A qualitative comparison of a scene graph predicted for a 3D
scene (left), with no pre-training (middle) and with pre-training (right). We visualize the top-1 object class prediction for each node and
the predicates with a probability greater than 0.5 for each edge. Ground truth labels are shown in square brackets. SGRec3D results in 7/9
correct nodes and 9/9 (partially) correct predicate predictions, while the baseline only reaches 5/9 and 4/9 respectively, despite predicting
many false positive predicates.

i ∈ N and edges j ∈ M

LSG =
1

N

N∑
i=1

λ1CE (ôi, oi) +
1

M

M∑
j=1

λ2BCE (p̂j , pj) (2)

where ôi, oi are the predicted and ground truth object node
classes and p̂j , pj are the predicted and ground truth predi-
cates for edge j. We choose λ1 = 0.1 and λ2 = 1.0.

To deal with class imbalance during fine-tuning, we use
a focal loss for both loss terms

L = −αt(1− pt)
γ log pt (3)

with α = 0.25 and γ = 2. However, we do not use manual
class weighting based on object and predicate occurrences
like SGFN [5].

2. Dataset Details
Following Wald et al. [4], our method operates on scene

splits with 4-9 objects instead of taking the full 3D scene
as input. For comparability, we use the exact same pre-split
scenes published by Wald et al. [4]. A full list of the 160
objects and 26 predicates used for the evaluation is in the
authors’ repository under subset data1.

For the ScanNet [2] and S3DIS [1] pre-training, we use
the most updated versions of each dataset available at the
time of publishing this paper. For uniform training samples,
we also generate scene splits for the additional datasets to
emulate the 3DSSG dataset [4] as best as possible. More-
over, before feeding object point clouds and pairs of ob-
jects’ point clouds into the PointNets [3], we apply farthest-
point-sampling to downsample the point clouds of each ob-
ject to at most 1000 points.

3. Architecture Ablations
In Tab. 1 we provide ablations examining the design

choices for our pre-training method. We present results

1https://github.com/3DSSG/3DSSG.github.io/

Object Predicate
Method R@5 mR@5 R@3 mR@3

Ours (w/o pre-train) 0.63 0.30 0.94 0.57

Ours (shape-loss only) 0.77 0.39 0.94 0.49
Ours (box-loss only) 0.76 0.35 0.96 0.59

Ours (w/o GCN) 0.75 0.31 0.94 0.48
Ours (w/o skip connection) 0.77 0.40 0.96 0.60

Table 1. Ablations point cloud pre-training approaches.

for: Our method without pre-training; Our pre-training only
using the shape-loss reconstruction term; Our pre-training
only using the bounding box reconstruction term. Fur-
ther, we provide architecture ablations for our method with-
out utilizing a GCN and without using our proposed skip-
connection from Sec. 3.

We observe that only using the shape-loss during pre-
training greatly improves object prediction performance.
However, the impact on predicate prediction is small. Only
using the bounding box loss term during pre-training im-
proves objects and predicates alike, but the results are worse
than using the shape-loss and bounding box-loss together. A
fundamental aspect of our method is the introduced GCN.
Without a GCN as a backbone, we observe that our pre-
training becomes considerably less effective in the learning
of predicates. In our architecture, we further introduce a
singular skip-connection in Eq. 6. This skip-connection
serves the role of conserving more context features from
the encoder. This skip-connection improves the reconstruc-
tion loss and consequently pre-training effectiveness for the
entire encoder.

4. Qualitative effect of pre-training

in Fig. 1, we provide a direct comparison between our
method pre-trained using our pre-training approach and the
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same method trained from scratch on 3D scene graph pre-
diction. We observe that using our pre-training drastically
improves the prediction accuracy of nodes and edges. The
predicted 3D scene graph using our pre-training is near per-
fect except for two misclassified objects, while the method
trained from scratch predicts many incorrect predicates and
also misclassified objects.

5. Scene Graph Results
In Fig. 2, we provide additional scene graph visualiza-

tions. We observe that our network is able to produce almost
perfect scene graphs in very diverse scenes. Some common
misclassification cases include incorrect edges where either
the ground truth is none and our network predicts a relation-
ship or our network does not predict a relationship when it
is present.

6. Scene Generation Results
In Fig. 3, we provide additional scene reconstructions.

The shown scene generations support those shown in the
paper. Although the generated shapes are not perfect, our
model seems to preserve the relationships in the original
scenes.
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Figure 2. Qualitative scene graph results from SGRec3D. Top: 3D scene; Bottom: Predicted 3D scene graph.
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Figure 3. Qualitative scene generation results from SGRec3D. Top: Original 3D scene; Bottom: Reconstructed scene using SGRec3D.
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