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A. Qualitative experiments

In this section, we provide additional results and quali-
tative comparisons to further support the effectiveness and
robustness of our approach. Figures 6 and 7 show qualita-
tive results on the UAVid [3] validation dataset, using our
multi-class segmentation approach. Our method shows re-
markable ability in segmenting moving cars and static cars,
given only a single static input. This indicates our method
uses contextual cues found in the surrounding scene to de-
termine if a car is parked or moving. Our method can in
some cases produce better segmentation than the ground

truth, as can be seen in Figure 6.
Figure 8 shows additional qualitative results on Vaihin-

gen Buildings [1]. Notably, our method demonstrates a
deep understanding of the scene and is able to isolate and
segment the primary center building with precision and ac-
curacy, despite the presence of numerous other buildings
and structures in the surrounding area. Images are best
viewed on a computer and zoomed-in.

(a) Image (b) Ours (c) Ground truth

Figure 6. Qualitative results on UAVid [3] validation. Our method can detect small details such as street lights, tree branches and people.
The ground truth labels are course and often missing, as can be seen in the first example where the street lights in the center of the image
are missing and the tall telephone tower in the bottom example is missing from the ground truth.
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(a) Image (b) Ours (c) Ground truth

Figure 7. Additional qualitative results on UAVid [3] validation. It is notable how our method can correctly classify static and moving
cars given only a single static input image.



Figure 8. Additional qualitative results on Vaihingen Buildings [1]. For each row group, top row: input image, middle row: our method,
bottom row: ground truth. Our method struggles most when there is a building extension with a different colored roof as can be seen in the
bottom row, third from the left.



B. Architecture
Our model is composed of four key modules: a time step

head, an image encoder head, a diffused segmentation en-
coder head, and the primary UNet-like encoder-decoder. To
integrate the time step into the model, the time step head
transforms it into a sinusoidal positional embedding, in-
spired by the positional embeddings utilized in Vaswani et
al. [6]. The image and segmentation heads have the same
structure, each including two ResNetBlocks (as shown in
Figure 9, but notably without time embeddings). The sum
of the outputs, of the image and segmentation heads, are
passed to the encoder-decoder. Our encoder-decoder mod-
ule takes inspiration from Efficient U-Net [4]. The architec-
ture of our encoder-decoder is shown in Figure 10, which
incorporates time step embeddings with each ResNetBlock.
Additionally, our model leverages Efficient Attention [5], a
type of attention mechanism with linear complexity.
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Figure 9. Diagram of our ResNetBlock, consisting of a residual
connection [2], a core building block for the model.
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Figure 10. Schematic of our encoder-decoder. The self attention
block uses Efficient Attention [5]. The details of the ResNetBlocks
are shown in Figure 9.
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Figure 11. Variation on the scaling schedule. At each time step, the input is resized to its smallest scale and the diffused segmentation is
denoised at this lower scale. The denoising process is then repeated iteratively as the segmentation is upscaled until it reaches its original
scale.

C. Multi-scale schedule variation
For the Vaihingen Buildings dataset we found a modifi-

cation to the scaling schedule worked better. This modifi-
cation involves denoising the image at each scale for each
time step and can be seen in Figure 11. For each time step,
the input is downscaled to the smallest scale (if there are
multiple scales) and the diffused segmentation is denoised
at this smaller scale. Then the segmentation is upscaled and
denoised, repeatedly until the original scale is reached. We
use bilinear interpolation for both downscaling and upscal-
ing. Training with this scaling schedule is shown in Algo-
rithm 2. We found this scaling schedule worked better on
Vaihingen Buildings than the linear scale scheduling, which
we used for UAVid.

Algorithm 2: Training with hierarchical scales

Input: x ∈ RW×H×3, RGB image
Input: s̄ ∈ RW×H×classes, segmentation labels
Parameters: T ∈ Z1, number of time steps
Parameters: M ∈ Z1, number of scales

1 ŝT ∼ N (0, I)
2 for t = T, ..., 1 do
3 for m = M, ..., 1 do
4 Resize ŝt to size ( W

2m−1 × H
2m−1 × classes)

5 Resize x to size ( W
2m−1 × H

2m−1 × 3)
6 zt ∼ N (0, I)
7 s′t ← ŝt + zt × t

T // diffuse
8 ŝt−1 ← s′t − ϵθ(s

′
t,x, t) // denoise

9 l← ∥ϵθ(s′t,x, t)− (s′t − s̄)∥2
10 Update ϵθ w.r.t. l
11 end
12 end
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