SimA: Simple Softmax-free Attention for Vision Transformers
(Supplementary material)

A. Appendix
A.l. Inference Time Comparison on GPU:

We compare execution time of SimA and other SOTA
methods on edge devices in Figure 1. Additionally, we
compare execution time of SimA, XCiT, and DeiT on GPU
in Figure Al.

A.2. Simple Pseudocode of SimA:

Since our method is simple, we include the pseudocode
of SimA in Algorithm 1.

Visualization: Figure A2 provides more results similar
to Figure 3. Please see Section 4.7 for details.

A.3. SimA without LPI:

Although XCiT [2] shows that LPI layer can improve
the accuracy by 1.2 point, it limits the application of vanilla
transformer (e.g., running masked auto encoder models like
MAE [24] is not straightforward). To show that our method
is not dependent on LPI, we train our model without LPI.
We observe that the accuracy drops by 1.2 point (82.1%
vs 80.9%). Hence, although LPI boosts the accuracy, our
method has comparable performance without LPI.

A 4. Details of Linear Attention Comparison:

CosFormer with cosine re-weighting requires 4 x more
FLOPs compared to SimA in multiplying K and V matri-
ces. Since CosFormer is developed for NLP, it assumes one
dimensional indexing for the tokens. However, applying it
to vision, we need to index the tokens with two indices to
take advantage of the induced locality. To do so, one may
introduce two cosine weights to Eq 10 of CosFormer [51]:
one in x direction and the other one in y direction to come
up with:

Qiymencos(i — j)cos(m —n)

which can be expanded to:

QimK J n ((’Oé(L)(,OS(])-‘,-SZ?L(Z)&ZTLU)) <cos(m)cos(n)+sin(m)sin(n))

which can be regrouped to:

= (QZ mcos(i)cos
+(@
+ (Ql msin(i
+(@

Hence, for every attention value, CosFormer needs 4
dot products between Q and K vectors while our method
needs only one dot product. Hence, following Eq. 12 of the
CosFormer paper, CosFormer needs 4 times more FLOPS
compared to our method in calculating the attention values
(multiplying @, K, and V matrices).

References

Algorithm 1 Pseudocode of SimA (Single Head) in a PyTorch-like style.

self.gkv: nn.Linear (dim, dim * 3, bias=gkv_bias) ; query, key, value projection
self.proj: nn.Linear (dim, dim, bias=output_proj_bias) ; output projection

def forward(self, x):
B, N, D = x.shape # B: batch size, N: number of Tokens, D: Dimension of Tokens
gkv = self.qgkv(x).reshape(B, N, 3, D).permute(2, 0, 1, 3) # (3 x B x N x D)
q, k, v = gkv[0], gkv[l], gkv[2] # split into query (B x N x D), key (B x N x D) and value (B x N x D)

k = torch.nn.functional.normalize(k, p=1.0, dim=-2) # Normalized key (B x N x D)
g = torch.nn.functional.normalize(q, p=1.0, dim=-2) # Normalized query (B x N x D)
if (N/D) < 1:

x = (q @ k.transpose(-2, -1)) @ v # (B x N x D)

x = q @ (k.transpose (-2, -1) @ v) # (B x N x D)

x = self.proj(x) # Output (B x N x D)

return x
500 Token Dimensions=384 +58% Resolution=256 +31%
[With Softmax (DeiT) 3501 @ With Softmax (XCiT)
B Without Softmax (SimA) B Without Softmax (SimA)
300

400
(3] (3]
g gzso
= 300 =
) S 200
c c
3 3
& 200 2150
= 5 +22%

100
0
100 +29%
+28% 50 +12%
+2% +6% +8% +13% +2% +2% +4% +8%
I O I
1282 2562 3842 5122 7682 10242 153672 256 512 1024 2048 4096 8192 16384
Resolution Token Dimensions

Figure Al. Effect of Softmax on inference time (GPU): We evaluate performance of each model on a single RTX 8000 GPU with batch
size of 8. When comparing the baseline to our method (SimA), we fix the order of (Q K7 V) to have the same dot product complexity as the
baseline. For example, when comparing with DeiT, if N > D, then it is more efficient to do Q(K 7'V for our method, but we do (QKT)V
to have same complexity as DeiT(O(N2D)). We do this to solely evaluate the effect of Softmax on the computation time. Left: We fix the
token dimension to 384 and increase the image resolution. At 1536 x 1536 resolution, DeiT is 58% slower than our method due to the
overhead of exp(.) function in Softmax. Right: We fix the resolution and increase the capacity of the model (dimensions of @ and K).
With 8192 dimensions, XCiT is 22% slower due to Softmax overhead.

SimA DeiT DeiT

Figure A2. Our method (SimA): We extract Q and K from layer 12 of transformer. We get £2-norm of each token for Q and K, normalize
it to range [0,1] and overlay it as a heatmap on the image. Interestingly, magnitude of tokens represent the significance of tokens in our
method. Note that all images are randomly selected from MS-COCO test set without any visual inspection or cherry picking.

	. Appendix
	. Inference Time Comparison on GPU:
	. Simple Pseudocode of SimA:
	. SimA without LPI:
	. Details of Linear Attention Comparison:

