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This supplementary material presents further details, re-
sults and insights into MAELi. We state further results in
Section 1, describe the detailed architecture of our decoder
in Section 2 and illustrate the motivation behind spherical
masking in Section 3. Furthermore, we evaluate the impact
of different amounts of masked voxels in Section 4 and dis-
cuss potential limitations in Section 5. Finally, we discuss
additional insights on reconstruction results and data effi-
ciency in Section 6.

1. Additional Results

We provide results for CenterPoint [8] and PV-RCNN [4]
to illustrate that our pre-trained initialization significantly
enhances these baseline models. Following insights from
the main manuscript (Section 4.1), we observe in Table 1
that our MAELi pre-training effectively improves detec-
tion performance in a low-data regime where only a lim-
ited number of annotated samples are available for fine-
tuning. In Table 2, we report AP scores for Waymo Open
Dataset (WOD) [5], extending the results from Table 2 in
the main manuscript. Additionally, in Table 3, we present
our findings on the KITTI 3D dataset using the R11 met-
ric, and make comparisons with ALSO [1] and Occupancy-
MAE [3].

2. Sparse Reconstruction Decoder for 3D Ob-
ject Detection

To describe the architecture of our decoder in detail,
we group operations with the same voxel/tensor stride into
a block. In Table 4, we list the different decoder blocks
in addition to the preceding bird’s-eye view (BEV) en-
coder (summarized as single entry) and the required reshap-
ing+sampling step to transform the dense feature represen-
tation back to a sparse 3D tensor.

Each block comprises an upsampling step using genera-
tive transposed convolution and a pruning step via 1×1×1
submanifold sparse convolution. The operations are listed
in Table 5.

3. Spherical Masking - Illustration

As discussed in the main manuscript (Section 3.3),
spherical masking reduces the angular resolution in azimuth
and inclination by subsampling the LiDAR’s range image.
Figure 1 illustrates the effect of this sampling on the Li-
DAR’s range image. We sample objects as if they were lo-
cated at a larger distance. Since nearby objects are more
densely sensed by the LiDAR, we have more knowledge
about the actual occupancy and thus, can induce a stronger
self-supervision signal. This helps to improve the model’s
ability to generalize to objects located farther away.

Figure 1. Spherical masking reduces the angular resolution of the
LiDAR (bottom). The resulting sampling is thus similar to objects
that are farther away (top).
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Fraction Method
3D AP/APH (LEVEL 2)

Gain Overall Vehicle Pedestrian Cyclist
AP APH AP APH AP APH AP APH AP APH

1%
(791 frames)

Centerpoint [8] - - 39.64 36.50 41.01 40.32 40.01 32.63 37.90 36.55
+ MAELi +9.29 +8.75 48.93 45.25 49.99 49.24 51.92 43.07 44.89 43.43
PV-RCNN [4] - - 43.93 30.72 51.34 48.70 41.59 20.35 38.86 23.11
+ MAELi +7.53 +4.89 51.46 35.61 56.24 55.38 49.41 25.32 48.73 26.14

‘
5%

(3952 frames)

Centerpoint [8] - - 53.91 51.16 53.04 52.45 52.73 46.51 55.96 54.53
+ MAELi +4.49 +4.21 58.40 55.37 57.62 57.01 59.01 51.83 58.57 57.27
PV-RCNN [4] - - 56.98 38.98 61.66 60.86 53.28 27.15 56.00 28.92
+ MAELi +1.64 +1.39 58.62 40.37 62.77 62.04 57.07 29.05 56.02 30.02

10%
(7904 frames)

Centerpoint [8] - - 58.09 55.41 56.95 56.40 56.97 50.90 60.35 58.94
+ MAELi +3.26 +3.07 61.35 58.48 59.93 59.36 62.06 55.30 62.06 60.78
PV-RCNN [4] - - 60.09 41.89 63.73 63.05 57.32 30.09 59.23 32.53
+ MAELi +1.19 -0.05 61.28 41.84 64.63 63.99 59.82 30.90 59.40 30.62

20%
(15808 frames)

Centerpoint [8] - - 61.81 59.15 60.59 60.06 61.19 55.03 63.64 62.36
+ MAELi +0.98 +0.90 62.79 60.05 61.79 61.23 63.47 57.04 63.11 61.87
PV-RCNN [4] - - 62.15 42.99 65.01 64.35 60.40 30.30 61.05 34.32
+ MAELi +0.49 +7.21 62.65 50.20 65.45 64.85 61.54 35.52 60.95 50.24

Table 1. Quantitative results of our pre-training on Centerpoint and PV-RCNN on the Waymo val set. For each detector, we report the
results of training from scratch (upper row) and the improved results utilizing a MAELi-pre-trained initialization (lower row), respectively.
We use the first 399 sequences of the Waymo train set for pre-training and different fractions of the second 399 sequences for fine-tuning.

Method 3D AP/APH (LEVEL 2)
Gain Overall Vehicle Pedestrian Cyclist

AP APH AP APH AP APH AP APH AP APH

SECOND [6] - - 58.26 54.35 62.58 62.02 57.22 47.49 54.97 53.53
+ Occ-MAE [3] +0.85 +0.75 59.11 55.10 62.67 62.34 59.03 48.79 55.62 54.17
+ MAELi +2.32 +2.35 60.57 56.69 63.75 63.20 60.71 50.93 57.26 55.95
CenterPoint [8] - - 64.51 61.92 63.16 62.65 64.27 58.23 66.11 64.87
+ Occ-MAE [3] +1.35 +1.31 65.86 63.23 64.05 63.53 65.78 59.62 67.76 66.53
+ MAELi +1.09 +1.08 65.60 63.00 64.22 63.70 65.93 59.79 66.66 65.52
PV-RCNN [4] - - 59.84 56.23 64.99 64.38 53.80 45.14 60.72 59.18
+ GCC-3D [2] +1.46 +1.95 61.30 58.18 65.65 65.10 55.54 48.02 62.72 61.43
+ PropCont [7] +2.78 +3.05 62.62 59.28 66.04 65.47 57.58 49.51 64.23 62.86
+ Occ-MAE [3] +5.99 +5.74 65.82 61.98 67.94 67.34 64.91 55.57 64.62 63.02
+ MAELi +5.88 +5.92 65.72 62.15 67.90 67.34 65.14 56.32 64.13 62.79

Table 2. Performance comparison on the Waymo val set trained on 20% of the Waymo train set including AP scores. We compare different
detectors trained from scratch with their pendants utilizing pre-trained weights from GCC-3D, ProposalContrast, Occupancy-MAE and the
proposed MAELi.

Method Pre-train mAP Car Pedestrian Cyclist

SECOND [6] - 66.25 78.62 52.98 67.15
+ Occ-MAE [3] KITTI 3D 66.71 78.90 53.14 68.08
+ ALSO [1] nuScenes 67.29 78.65 55.17 68.05
+ ALSO [1] KITTI 3D 66.86 78.78 53.57 68.22
+ ALSO [1] KITTI360 67.40 78.63 54.23 69.35
+ MAELi Waymo 68.31 78.44 55.72 70.78
+ MAELi KITTI 3D 67.51 78.20 55.48 68.86
+ MAELi KITTI360 68.74 78.44 56.00 71.79
PV-RCNN [4] - 70.66 83.61 57.90 70.47
+ Occ-MAE [3] KITTI 3D 71.73 83.82 59.37 71.99
+ ALSO [1] nuScenes 72.20 83.77 58.49 74.35
+ ALSO [1] KITTI 3D 71.96 83.67 58.48 73.74
+ ALSO [1] KITTI360 72.69 83.39 60.83 73.85
+ MAELi Waymo 71.79 83.38 58.53 73.45
+ MAELi KITTI 3D 70.70 79.22 60.02 72.87
+ MAELi KITTI360 73.03 83.99 62.43 72.67

Table 3. Quantitative results of our pre-training on SECOND and
PV-RCNN on the KITTI 3D val set using the R11 metric.

Description # Channels Voxel/Tensor Spatial
Stride Dimension

Output BEV Encoder 512 - 188 × 188
Reshaping + Sampling 256 8 × 8 × 16 188 × 188 × 2
DBlock 1 64 8 × 8 × 8 188 × 188 × 5
DBlock 2 64 4 × 4 × 4 376 × 376 × 11
DBlock 3 32 2 × 2 × 2 752 × 752 × 21
DBlock 4 16 1 × 1 × 1 1504 × 1504 × 41

Table 4. Architecture of our decoder. We state the number of chan-
nels, the voxel stride and the maximum spatial dimension for the
Waymo Open Dataset after each block. Stride and spatial dimen-
sions are depicted in the format x × y × z. Each decoder block
inverts one downsampling step from the sparse 3D encoder, even-
tually resulting in the original voxel stride.

4. Ablation Study

Analyzing Pipeline Components: We perform various ex-
periments to investigate specific aspects of our pipeline,
such as assessing the influence of our distance weighting



Operation Kernel Size Stride

Generative Transposed Convolution 2 × 2 × 2† 2 × 2 × 2†

Batch Norm - -
ReLU - -
Submanifold Sparse Convolution 3 × 3 × 3 1 × 1 × 1
Batch Norm - -
ReLU - -

Submanifold Sparse Convolution 1 × 1 × 1 1 × 1 × 1
Pruning - -

Table 5. Structure of each decoder block. We additionally state
the operation’s kernel size and stride, each in the format x×y×z.
The upper part depicts the upsampling and feature transformation.
The lower part uses the final feature representation from above
and decides via classification whether a voxels is pruned or not.
†These values deviate for DBlock 1, where it has a kernel size of
1×1×3 and a stride of 1×1×2 to invert the encoder’s respective
downsampling step.

for empty voxels, evaluating our LiDAR-aware reconstruc-
tion objective, and comparing the effectiveness of the voxel-
and spherical masking strategies.

Therefore, we pre-train according to the Data Efficiency
protocol depicted in the main manuscript (Section 4.1) and
fine-tune a SECOND [6] model on 1% of the latter 399 se-
quences of the Waymo train set. To disable distance weight-
ing, we set wD,s

j = 1 for all empty voxels vD,s
j . To disable

our LiDAR-aware reconstruction, we additionally consider
all unknown voxels as empty.

We state the results in Table 6 on Vehicle LEVEL 2
across the distance ranges [0m, 30m), [30m, 50m) and
[50m, +∞). Our LiDAR-aware reconstruction objective
improves the overall results across all ranges. While voxel
masking naturally has a nearly equal impact over all ranges,
our spherical masking is especially beneficial for the range
[30m, 50m) with a gain of 1.87AP and 2.01APH. The over-
all lower impact on the far distance range (above 50m) is
also reasonable, since at this distance only very few points
are sampled on the same object.
Masking: We evaluated our voxel masking for different
amounts of voxels. We maintain the training and evalua-
tion scheme from above and vary the amount of kept voxels.
The results are shown in Table 7. Keeping 60% of the vox-
els leads to the best overall results, eventually used for all
other experiments with MAELi. However, in combination
with spherical masking significantly fewer points than this
fraction actually remain. To get an estimate, we evaluated
the amount of effectively used points over 10000 iterations,
resulting in a fraction of 15.57% on average.

5. Limitations

Even though our sparse decoder allows for a memory ef-
ficient reconstruction, the amount of reconstructed voxels
is obviously constrained by the available compute infras-

tructure. Especially during the first iterations of our pre-
training, while not sufficiently trained, some samples may
lead to an uncontrolled reconstruction. In order to regulate
the amount of reconstructed voxels and to avoid training
breakdowns, we introduce two limiting factors. First, we
estimate an average ground plane for each dataset and prune
all reconstructed voxels that are 0.1m below this plane, as
these generally do not contribute valuable information. Sec-
ond, we introduce a threshold for the maximum amount of
reconstructed voxels to ensure that we do not run into mem-
ory issues. If an upsampling step would generate more vox-
els than this limit, we randomly prune before the upsam-
pling. For these pruned voxels, simply no loss is induced,
which only slightly delays the training effect for these rare
cases. For the detection experiments, we set the maximum
number of total voxels to 6 million, which are easily pro-
cessable, e.g. on an NVIDIA® GeForce® RTX 3090 GPU.
We counted only 62 limit exceedances within the first 10k
iterations of a random experiment.

6. Additional Insights
Reconstruction Capabilities: In Figure 2, we visualize the
reconstruction capabilities of our LiDAR-aware loss on a
full point cloud. It encourages the network to fill up gaps in
the wall and reconstruct the occluded areas of cars.

Figure 3 highlights that reconstruction outcomes can
vary across different objects, with some objects such as the
less frequent trucks presenting greater challenges. How-
ever, the MAELi model demonstrates an advanced under-
standing of object semantics, enabling it to complete objects
beyond the visible LiDAR input point cloud.

In Figure 4, we show the individual layers of two dif-
ferent reconstructed cars. We can see that our pre-training
approach indeed encourages the model to go beyond the
sampled LiDAR surface, reconstructing the entire car, also
showing some hints for the correct placement of tires.
Furthermore, especially parts of the interior, which are
often surrounded by glass and thus, sometimes traversed
by LiDAR beams, are seemingly left out during the recon-
struction.

AP vs APH Data Efficiency: In Figure 5, we plot
the data efficiency results on Waymo [5] using our MAELi-
based pre-training on the SECOND [6] detector. All three
classes benefit from our pre-training (solid lines) compared
to the vanilla version trained from scratch (dotted lines).
With little data, the vanilla detector especially struggles
to estimate the heading, which can be clearly seen for the
smaller, less represented classes Pedestrian and Cyclist.
However, utilizing our initialization, a proper estima-
tion and significant detection improvements are possible
already, early on, with only few annotated data samples.



(a) (b)

Figure 2. Completion results (a) without and (b) with our LiDAR-aware reconstruction on a full point cloud (gray). For visualization
purposes, we color-coded the output points by their z-coordinate and removed the reconstructed ground plane.

Method
3D AP/APH (LEVEL 2)

Overall [0m, 30m) [30m, 50m) [50m, +inf)
AP APH AP APH AP APH AP APH

MAELi 51.05 50.11 80.22 79.37 48.86 47.64 21.09 19.98
w/o DW 50.91 49.85 79.95 79.04 48.62 47.20 21.47 20.31
w/o LAR 50.05 48.87 79.33 78.20 47.77 46.27 20.66 19.56
w/o VM 48.99 47.86 78.45 77.46 46.43 45.05 19.47 18.23
w/o SM 49.90 48.85 79.50 78.54 46.99 45.63 20.53 19.37

Baseline 41.64 40.02 72.59 70.79 37.09 34.86 13.14 11.96

Table 6. Impact of the components of MAELi evaluated on the Waymo val set for Vehicle. We disable distance weighting (w/o DW),
LiDAR-aware reconstruction (w/o LAR), voxel masking (w/o VM) and spherical masking (w/o SM). We use the first 399 sequences of the
Waymo train set for pre-training and 1% of the second 399 sequences for fine-tuning. We utilize a SECOND [6] model and state a version
trained from scratch as baseline.

Fraction
Voxels

3D AP/APH (LEVEL 2)
Overall Vehicle Pedestrian Cyclist

AP APH AP APH AP APH AP APH

0.8 45.34 32.84 50.26 49.10 48.03 24.33 37.74 25.09
0.7 44.91 32.10 50.35 49.19 47.54 24.29 36.83 22.83
0.6 46.01 33.05 51.05 50.11 48.13 24.65 38.86 24.38
0.5 45.60 32.27 50.87 49.79 47.08 23.72 38.86 23.31
0.4 45.79 31.85 50.36 49.24 48.27 24.50 38.74 21.81

Baseline 31.09 22.25 41.64 40.02 33.39 17.45 18.24 9.29

Table 7. Impact of different amounts of voxels kept during voxel masking evaluated on the Waymo val set for Vehicle. We use the first 399
sequences of the Waymo train set for pre-training and 1% of the second 399 sequences for fine-tuning. We utilize a SECOND [6] model
and state a version trained from scratch as baseline.



Figure 3. Further reconstruction results. We show the input point cloud on the left and the completed point cloud on the right. MAELi’s
reconstruction exhibits imperfections when reconstructing objects that are sparsely sampled or less frequent, such as trucks. However, it
shows an apparent understanding of traffic scenes beyond a LiDAR’s 2.5D sampling, e.g. by symmetrically completing occluded parts of
cars and poles. For visualization purposes, we color-coded the output points by their z-coordinate and removed the reconstructed ground
plane.



Figure 4. Different layers of two reconstructed cars. We observed that the reconstructed cars are often hollow. There are visible tendencies
to leave parts of the interior free.
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Figure 5. Results of our pre-training on SECOND [6] on the Waymo val set, using different amounts of labeled data. We use the first 399
sequences of the Waymo train set without any labels for pre-training and different fractions of the latter 399 sequences for fine-tuning. The
solid lines are the results utilizing our pre-training with MAELi. The dotted lines denote the version trained from scratch.
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