
Image Denoising and the Generative Accumulation of Photons
Supplementary Material

Alexander Krull1,2, Hector Basevi2,3, Benjamin Salmon1, Andre Zeug4, Franziska Müller4,
Samuel Tonks1, Leela Muppala1, and Aleš Leonardis1
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1. Code and Data Availability
The code and datasets will be made publicly available here: https://github.com/krulllab/GAP.

2. Comparing DDPM versus our Generative Model
In Figure 1, we qualitatively compare our results against a denoising diffusion model (DDPM) [1]. While DDPM models

achieve impressive sample quality, they are, unlike our method not able to learn the generation of denoised images when
trained on noisy data.

3. Additional Details on the Training Procedure
During training, we must ensure that our CNN is able to produce high quality predictions for a range of photon counts.

To achieve this, we randomly pick a value for p for each training patch (see section 3.5 in the main paper). To achieve a
good coverage over different noise levels/photon counts we use a concept we call pseudo-PSNR, explained in section 3.1.
We sample uniformly from a range of pseudo-PSNR numbers and then compute the corresponding value for p accordingly.
The process is described in section 3.2

3.1. The Pseudo-PSNR value

When imaging a static sample the resulting PSNR number of the recorded image depends on the amount of light that was
allowed to hit the detector. We can expect a longer exposure time or stronger light intensity to produce a cleaner image with
a higher PSNR value than an image recorded with a shorter exposure or reduced light intensity, in which the detector was
allowed to collect fewer photons. We define the intensity of an image as the average as the average number of photons per
pixel

γ =
|x|
n

. (1)

To compute the PSNR value of a noisy image x one generally requires the correctly scaled version of the normalised clean
ground truth image s. We can compute the correctly scaled signal as s̄ = γns, which is then directly comparable to the noisy
image x. The equation used for this is

PSNR(x, s̄) = 10 log10
s̄2max

MSE
, (2)

where s̄max is the maximum value of the absolute signal s̄, and MSE is the mean squared error between x and s̄.
The idea of pseudo-PSNR is to directly compute the PSNR value we might expect for a shot noise corrupted image of a

certain intensity, without requiring us to compare a noisy and clean image. We define the pseudo-PSNR value for intensity γ

https://github.com/krulllab/GAP
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Figure 1. DDPM vs GAP: Randomly generated samples from DDPM and GAP compared to paired clean and noisy samples.
DDPM [1] and our method were trained on 256x256 patches sampled from the low-SNR MT-SM dataset, each input was obtained via data
augmentation strategies that included random cropping, vertical and horizontal flipping, and random transposing. DDPM was trained with
default settings and a batch size of 4 on a single NVIDIA GTX1080Ti for 40,000 iterations.

as the PSNR value we would expect for the shot noise corrupted version of a flat signal s, with all pixel values being si =
1
n .

Based on the shape of the Poisson distribution, we should expect for such an image MSE = γ and s̄max = γ. Based on Eq 2,



we cacalulate the pseudo PSNR as

PSNRPS(γ) = 10 log10
s̄2max

MSE

= 10 log10
γ2

γ

= 10 log10 γ

(3)

We can invert Eq. 3 to compute the corresponding intensity γ for a given pseudo PSNR value as

γ = 10
PSNRPS

10 . (4)

3.2. Training Pair Sampling

Before we can split out traiing patches into input and target using a binomial distribution (see section 3.5 in the main
paper), we have to determine the success probability parameter p sed in the distribution. To achieve this, for each training
patch, we first sample from a uniform distribution over pseudo PSNR values between a predefined minimum and maximum.

The goal is to set p, so that the average photon number (intensity) of the resulting input image corresponds to the drawn
pseudo PSNR value. We compute the corresponding intensity γ using Eq. 4 from the randomly determined pseudo PSNR
value. Then, we compute the corresponding success probability for the binomial distribution as

p =
γ

|x|/n
, (5)

such that the input image photon count after the split will correspond to the drawn pseudo PSNR. The result is then clipped
to values below 0.99 to guaranty that at least 1% of photons is on average assigned to the target image.

We use the following intervals to sample the pseudo PSNR values: [−40 : −5] for NPC-SM, [−40,−10] for MT-SM,
[−40,−10] for Conv-PC, and [−40, 20] for Neuro-PC.

4. Details on Photon Sampling Procedure
Here, we want to discuss the details of the photon sampling procedure. Depending on whether we perform image gener-

ation or diverity denoising, we initialise the the process with an empty image or noisy image x0. We then apply our trained
CNN to compute the probability distribution over the possible next photon position

s̄t = f(xt; θ). (6)

Because of our softmax output layer it is guaranteed each pixel value s̄t,i ≥ 0 and that

n∑
i

s̄t,i = 1. (7)

We then sample a set of new photons represented by the image xnew
t , where each pixel value xnew

t,i holds the number of
photons that will be added at location i. Each pixel value xnew

t,i is drawn from a Poisson distribution with mean

λt,i = ns̄t,iαt, (8)

where αt controls how many photons will on average be sampled in total in xnew
t . We set as

αt = max(β

n∑
i

xt,i, 1), (9)

where the parameter β controls the rate at which the photon number increases on average. In our experiments, we set
β = 10%. The maximum operation ensures that the number of photons is increasing from the beginning even when starting
with an empty image x0. Finally, we compute the next photon count image as

xt+1 = xt + xnew
t (10)

and repeat the process.



5. Detailed Description of Datasets
Here, we want to give additional information about the counting datasets we recorded.

5.1. Conv-PC dataset

Data were recorded from a convallaria majalis rhizome section sample slide at the same system (Leica TCS SP8 TPE
DIVE with FALCON and the HC PL IRAPO 25x dipping objective). Here we used 850 nm excitation at 1% laser power,
, HyD-RLD detector, emission range of 650 – 700 nm (Note to Alex: Ch1: 600nm - 650nm, Ch2: 650nm - 700nm), pixel
size 0.6 x 0.6 µm, a 8 MHz resonant scanner and 4x averaging. A time series of 8192 frames was recorded and later binned
4 times. A subset of this data was taken for the study. Although the xy-drift of the dataset was below 2 pixels, we used the
drift-corrected mean of the complete dataset as ground truth.

5.2. Neuro-PC dataset

Data were obtained form 11–14 week old male Mice (C57BL/6J background) stereotactically injected with AAV-hGFAP-
5-HT4R-eGFP and AAV-hGFAP-tdTomato to the CA1 region of the hippocampus 3 weeks prior to experiment. Data where
recorded from acute slices of the mouse hippocampus region at a Leica TCS SP8 TPE DIVE with FALCON, using following
acquisition settings: HC PL IRAPO 25x dipping objective, excitation 920 nm at 15-30%, HyD-RLD detector, emission 490
– 560 nm (eGFP), and 560 – 650 nm (tdTomato), voxel size ( 0.1 x 0.1 x 0.5 µm), 4x averaging, scan speed 600 Hz.

6. Network Architecture
We use a modified UNet [6] architecture, with skip connections and residual blocks. Each residual donw-block and up-

block consists of 3 3×3 convolutions with RELU activation functions after the second convolutions and at the end of the
block. We use max-pooling for down-sampling and transposed convolutions for up-sampling.

Since we are training a single network to handle a range of different noise levels and photon counts in its input, normalzing
the input is not trivial. To avoid normalization, we use a sinusoidal frequency encoding [7] applied to each pixel value at the
input of our network. We use 10 different sinosoids with frequencies at different powers of 10.

7. Hyper Parameters
Since our datasets have differing sizes, we define one training epoch as 500 training steps. We use the first 90% of images

in each dataset as training data and the last 10% as validation set. We use the ADAM optimizer [3]. We use an initial learning
rate of 1e−4 and reduce the learning rate using the pytorch ReduceLROnPlateau scheduler with a patience of 10 by a factor
of 2.

8. Details on the Loss Function
Here we show that the loss function from Eq. 13 in the main paper, which uses images target images xk

tar with multiple
photons is equivalent to using single photons represented by one-hot-encoding images. We can write the loss as

L(θ) = −
m∑

k=1

n∑
i=1

ln fi(x
k
inp; θ)x

k
tar,i

= −
m∑

k=1

n∑
i=1

ln fi(x
k
inp; θ)

T∑
t=1

xk,t
tar,i

, (11)

where
∑T

t=1 x
k,t
tar,i is the one-hot-encoding photon image for photon t from xk

tar. Note that the order of photons does not matter
here. We can then continue to write

L(θ) = −
m∑

k=1

n∑
i=1

ln fi(x
k
inp; θ)

T∑
t=1

xk,t
tar,i

= −
m∑

k=1

T∑
t=1

n∑
i=1

ln fi(x
k
inp; θ)x

k,t
tar,i

. (12)



In this formulation it becomes clear that using target images with multiple photons is equivalent to replicating each input
image T times and using it together with each of the corresponding single-photon target images. This corresponds to the
same training data distribution as randomly sampling single photon targets.

9. Additional Qualitative Results
Here, we show random uncurated samples for all datasets in Figure 2

10. Image Generation on Natural image datasets
To show the potential of our method, we show uncurated random outputs of our generative model when applied on natural

image datasets in Figure 3. To account for the greater complexity of these datasets, we trained 8 expert networks , each
specialised on a sub-range of pseudo PSNR values. Each network is scaled up to 7 levels (instead of 6) and starting with 32
feature (instead of 28) channels When generating images we switch between these expert networks as the image gains more
and more photons. Apart from this the approach is the same as for the microscopy data.

11. Denoising with added Gaussian Noise
To test the limitations of our method we use the BSD68 dataset [5] with simulated shot noise at peak photon level 20

(see [4]) and additionally at various levels of additive white Gaussian noise. Results for this experiment can be found in
Table 1. We observe htat PSNR drops substantially when larger amounts of Gaussian noise are added. Note the the model
never saw Gaussian noise during training and that Gaussian noise goes against the assumtions mate by our method.

Table 1. We show the PSNR achieved by our method when addition different levels of Gaussian noise to the data. Experiment was done
on the BSD68 [5] dataset with Poisson noise at peak photon level 20 (see [4]) and the respectively additional Gaussian noise.

Standard deviation in photons 0 0.25 0.5 1 2 4
PSNR 27.01 26.99 26.91 26.28 22.56 16.54

12. Runtime
The model requires 0.012 seconds to process a 481 × 321 pixel image on an Nvidia GA102 [GeForce RTX 3090]. We

believe this can be improved by processing multiple images in parallel.



References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:6840–6851, 2020.
[2] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In CVPR, pages

4401–4410, 2019.
[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd international conference on learning representa-

tions, iclr 2015. In ICLR, 2015.
[4] Hao Liang, Rui Liu, Zhongyuan Wang, Jiayi Ma, and Xin Tian. Variational bayesian deep network for blind poisson denoising. Pattern

Recognition, 143:109810, 2023.
[5] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented natural images and its application

to evaluating segmentation algorithms and measuring ecological statistics. In CVPR, volume 2, pages 416–423. IEEE, 2001.
[6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In Interna-

tional Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015.
[7] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi,

Jonathan T Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. In
Proceedings of the 34th International Conference on Neural Information Processing Systems, pages 7537–7547, 2020.

[8] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale image dataset using deep
learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.



Low SNR High SNROurs Low SNR High SNROursHDN256

Low SNR High SNROursHDN256 Low SNR High SNROursHDN256

HDN256

Figure 2. Comparison of sample quality: We show randomly selected generated samples for all datasets (top-left to bottom-right: Conv-
PC, MT-SM, NPC-SM, Neuro-PC) compared to randomly cropped real high- and low-SNR patches.



Figure 3. Randomly selected sample images generated by our model. Results of our method when trained on the 256×256 pixel
versions of FFHQ dataset [2] and the LSUN-churches dataset [8].


