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In the following, we provide detailed results accompany-
ing the evaluations reported in the main manuscript, as well
as a breakdown of our runtime analysis.

1. Detailed Results
CIFAR. Table 1, Table 2, and Table 3 provide a compre-
hensive breakdown of the CIFAR [9] results for each of
the eight out-of-distribution (OOD) datasets (SVHN [12],
Textures [2], iSUN [18], LSUN (resized and cropped) [19],
Places365 [20], MNIST [10], and Fashion-MNIST [16]),
supplementing the average results presented in Table 2 of
the main manuscript. Our Adaptive Temperature Scal-
ing method consistently enhances the performance for CI-
FAR [9] against various OOD datasets.

However, an exception is observed with Places365 [20],
where performance is slightly diminished. The observed
discrepancy can be attributed to the inherent similarities be-
tween samples in Places365 [20] and those in the CIFAR [9]
datasets. We manually curated exemplary Places365 [20]
classes that exhibit a striking resemblance to CIFAR’s in-
distribution classes in Fig. 1. Given the semantic similar-
ity or outright overlap of multiple samples with ID classes,
the validity of using the whole Places365 [20] dataset
as an OOD test set is questioned. We further analyzed
Places365 [20] as an OOD test set for ResNet18 trained on
CIFAR-100 [9] in order to investigate the observed drop in
FPR95 performance for this setting (decrease by 4.7% us-
ing MSP with ATS, see Table 1 in the main manuscript). In
Fig. 2, we present samples from Places365 [20] that were
identified as OOD under MSP [7] but were reclassified as ID
upon applying ATS. A closer examination reveals that these
samples have high similarities or overlap with CIFAR-100’s
ID classes. We argue that the observed performance dip
can be ascribed predominantly to these overlapping sam-
ples, further emphasizing the efficacy of ATS.

Across all CIFAR benchmarks, the per-sample temper-
ature used as a standalone method demonstrates promis-
ing results. However, the performance is notably enhanced
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when we use the temperature to scale the logits, increasing
the gap between ID and OOD samples and thereby improv-
ing the model’s overall performance in out-of-distribution
detection.

ImageNet. Table 4 shows the per-dataset (iNaturalist
[15], SUN [17], Places [20], Textures [2], NINCO [1], and
Fashion-MNIST [16]) results for ImageNet [3] (average re-
sults reported in Table 3 in the main manuscript). Our ap-
proach significantly improves the performance of methods
such as MSP [7], ODIN [11], and MLS [6], as they have
a comparatively low baseline. Remarkably, ATS still im-
proves the overall result on strong baseline methods, i.e.,
ReAct [13], DICE [14] and ASH [4], but the improvement is
less pronounced. The limited improvement observed com-
pared to CIFAR, especially on strong baselines, can be at-
tributed to the OOD datasets’ specific characteristics and
the intermediate layer selection process (see Section 4.3 in
the main manuscript). The per-sample temperature alone
shows weak performance on the ImageNet dataset, but the
incorporation of ATS enhances the results. This improve-
ment is particularly prominent when detecting far-OOD
data such as Fashion-MNIST [16], emphasizing the effec-
tiveness of ATS in boosting the robustness of OOD detec-
tion methods.

We also note that ATS consistently improves the per-
formance on NINCO [1]. This is relevant because
NINCO [1] has been cleared from semantically similar sam-
ples, where the OOD-ness is unclear, while OOD datasets
such as Places or iNaturalist [15] contain overlap with Im-
ageNet [3], calling their value as OOD test sets into ques-
tion [1].

Summary. ATS provides a favorable trade-off between
performance on near-OOD and far-OOD datasets. While
ATS generally enhances the robustness of OOD detection,
especially against far-OOD samples, there are combina-
tions of ID and OOD datasets where its inclusion results in
slightly degraded performance. This trade-off highlights the



need for further research on per-sample optimized informa-
tion extraction from the intermediate layers of the network.

Our analysis further shows that using Places365 [20]
as an OOD test set for the CIFAR [9] datasets, and fur-
ther supported by Bitterwolf et al. [1] regarding overlaps
with ImageNet [3], not all datasets are suited as impeccable
OOD test sets. Nevertheless, we opted to include all rele-
vant datasets in our evaluation for a comprehensive evalua-
tion and to maintain consistency with state-of-the-art bench-
marks. This leads to an important realization: there is a
pressing need for more rigorous OOD test set design and
consequent research, ensuring precise OOD evaluation.

2. Computational Details
In this section, we perform a runtime analysis of our ap-

proach, detailed in Algorithm 1 and Algorithm 2, to under-
stand the practical implications. These algorithms provide a
detailed procedure for the calibration and inference phases
of our Adaptive Temperature Scaling approach.

It should be emphasized that the calibration phase (Al-
gorithm 1) involves pre-computing the eCDF for each cho-
sen intermediate layer based on the in-distribution training
set and is conducted offline, thereby not contributing to the
computational overhead during test-time. During inference
(Algorithm 2), the overhead primarily arises from comput-
ing the mean layer activation, which is the ”bottleneck” of
our approach and scales linearly with the number of acti-
vations. The subsequent steps, including p-value retrieval,
their aggregation, and temperature scaling, are relatively in-
consequential in terms of computational demand.

We conducted an experiment to measure the inference
time with and without ATS for three models. The exper-
iment measures the inference time, including temperature
calculation and logit scaling, but excludes the logit-based
OOD scoring function, comparing the overhead against a
normal forward pass. For a precise evaluation, we mea-
sure inference times across 10k iterations, preceded by 1k
warmup runs using a synthetic input.

Figure 3 depicts the runtime overhead of ATS for three
models: ResNet18, ResNet50, and DenseNet100, based
on the choice of intermediate layers. In the analysis, we
focus on the initial l layers (left plot of Fig. 3) and the
concluding l layers (right plot of Fig. 3) for ATS com-
putations. When layers are selected uniformly across the
model’s depth, the computational overhead remains mod-
erate: 6.18% for ResNet18, 11.94% for ResNet50, and
4.71% for DenseNet100. Furthermore, Fig. 3 underlines
that while this overhead is acceptable considering the per-
formance gains, shallow layers impose a greater computa-
tional burden due to their large feature dimensions.

Optimizing the runtime overhead is possible by refining
the number of intermediate layers, considering the preserva-
tion of robustness. Building on insights from Section 4.3 of

our main manuscript, it is evident that optimal intermediate
layers for ATS vary depending on the ID vs. OOD datasets.
Harnessing this understanding, a prudential strategy would
dynamically select the best N layers, harmonizing compu-
tational speed with OOD detection performance. This syn-
ergy accentuates the exciting prospects in fine-tuning layer
choices, signaling the need for further research on adaptive
layer selection strategies.

The experiment is conducted on a server equipped with
an Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz, paired
with an NVIDIA GeForce RTX 3080 GPU. The computa-
tional setup operates on Ubuntu 22.04, incorporating Py-
Torch 1.13, and leveraged CUDA 11.6 and cuDNN 8.3.2.
The standard neural network forward pass and the adaptive
temperature scaling (ATS) operate independently without
contending for computational resources.

We reckon that opportunities exist for even more compu-
tationally efficient implementations of ATS. Thus, the cur-
rent evaluation serves as an initial benchmark for the com-
putational overhead.
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Method

OOD-Dataset
SVHN Textures iSUN LSUN LSUN-Crop Places365 MNIST fMNIST Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

AT-only 96.06 17.02 88.46 43.04 92.42 32.89 93.67 28.79 97.49 15.11 59.62 89.57 97.77 12.00 87.75 55.45 89.16 36.73

MSP 90.23 65.17 89.64 62.79 92.00 55.45 92.49 53.64 93.83 44.71 88.73 62.52 93.08 51.57 93.49 48.10 91.69 55.49
MSP+ 98.33 8.62 95.26 25.92 98.42 7.75 98.73 5.73 99.41 2.61 87.55 52.23 99.46 1.69 98.26 9.14 96.93 14.21

ODIN 89.96 48.14 87.50 51.32 96.89 16.65 97.43 13.62 98.18 9.58 89.19 46.73 99.42 2.06 98.57 6.66 94.64 24.35
ODIN+ 97.96 10.53 94.03 28.98 98.26 8.88 98.68 6.40 99.45 2.28 82.72 66.09 99.80 0.24 98.23 9.42 96.14 16.60

MLS 91.36 51.01 89.08 55.46 94.26 36.40 94.97 32.10 97.53 14.11 90.62 44.93 97.13 17.08 97.13 16.95 94.01 33.50
MLS+ 98.33 8.61 95.23 25.98 98.42 7.77 98.73 5.74 99.42 2.58 87.44 52.45 99.46 1.67 98.26 9.14 96.91 14.24

Energy 91.37 50.65 89.03 55.64 94.30 35.89 95.02 31.52 97.64 13.41 90.67 44.44 97.26 16.05 97.24 16.09 94.07 32.96
Energy+ 97.22 14.16 91.30 39.40 96.56 18.66 97.23 14.28 99.17 4.20 78.85 71.47 99.41 2.02 96.60 19.81 94.54 23.00

ReAct 74.76 76.20 67.58 80.12 65.41 82.47 65.03 82.39 74.33 70.42 65.61 81.48 79.67 65.63 72.51 78.30 70.61 77.12
ReAct+ 93.98 25.24 84.58 51.61 88.56 47.62 89.55 47.26 93.38 30.01 65.33 82.44 93.06 27.62 84.31 54.91 86.59 45.84

DICE 72.08 75.29 62.20 79.64 63.43 87.55 66.11 85.37 92.21 27.93 60.33 87.08 97.39 12.96 90.30 41.93 75.51 62.22
DICE+ 95.19 25.29 84.30 53.58 89.70 41.68 90.50 41.16 95.91 20.85 67.86 80.74 98.58 6.74 90.43 41.14 89.06 38.90

ASH-B 67.08 76.65 62.32 81.76 64.37 80.72 64.46 80.22 74.73 63.44 59.64 85.87 79.71 60.77 72.63 71.71 68.12 75.14
ASH-B+ 87.92 44.58 81.05 57.32 85.65 49.64 86.69 49.35 94.09 26.38 60.96 86.75 95.57 24.18 86.76 51.18 84.84 48.67

Table 1. Detailed performance of OOD detection methods with and without ATS for ResNet18 [5] trained on CIFAR-10 [9]. Method
AT-only denotes the performance when the per-sample temperature is used directly as the OOD detection score. Method+ denotes that
our ATS is applied on top of the method (i.e., rows with gray background). ↑/↓ indicates that larger/smaller values are better. The best
and second-best results for each OOD dataset (i.e., each column) are shown in bold or underlined, respectively. All values are reported as
percentages.

Method

OOD-Dataset
SVHN Textures iSUN LSUN LSUN-Crop Places365 MNIST fMNIST Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

AT-only 97.27 12.96 91.25 33.37 95.29 24.25 95.76 22.05 97.40 14.56 57.85 90.90 98.99 1.72 94.21 34.85 91.00 29.33

MSP 88.21 70.92 89.65 62.20 94.43 43.10 94.97 39.36 95.92 30.82 88.69 63.88 93.99 49.37 94.88 38.00 92.59 49.71
MSP+ 98.81 6.00 96.51 19.84 99.49 2.13 99.57 1.59 99.77 0.69 90.83 44.71 99.88 0.02 99.45 1.94 98.04 9.62

ODIN 92.41 45.53 89.02 49.43 99.05 3.94 99.27 2.21 99.34 2.45 91.79 39.74 99.53 0.99 98.93 4.61 96.17 18.61
ODIN+ 98.78 6.37 96.31 19.91 99.59 1.62 99.67 1.16 99.77 0.56 89.81 49.24 99.94 0.00 99.46 1.77 97.92 10.08

MLS 92.15 47.55 88.53 53.40 97.95 10.13 98.25 7.70 99.21 2.83 91.78 40.46 98.79 4.20 98.65 6.03 95.66 21.54
MLS+ 98.81 6.00 96.51 19.86 99.49 2.13 99.57 1.60 99.77 0.69 90.81 44.77 99.89 0.02 99.45 1.96 98.04 9.63

Energy 92.24 46.32 88.44 53.03 98.01 9.45 98.31 7.16 99.29 2.57 91.83 39.59 98.92 3.53 98.74 5.42 95.72 20.88
Energy+ 98.75 6.56 94.39 26.45 99.29 3.00 99.36 2.42 99.75 0.77 85.55 58.85 99.92 0.01 99.22 3.12 97.03 12.65

ReAct 93.23 44.38 92.12 45.78 98.15 8.56 98.45 6.17 99.30 2.53 92.09 39.47 98.84 4.44 98.68 5.81 96.36 19.64
ReAct+ 98.96 4.90 97.08 16.97 99.47 2.39 99.55 1.74 99.76 0.78 90.70 45.55 99.87 0.02 99.43 2.11 98.10 9.31

DICE 95.58 25.66 89.16 43.69 99.27 3.03 99.42 2.08 99.93 0.22 91.00 43.21 99.97 0.00 99.62 1.51 96.74 14.92
DICE+ 98.29 9.70 96.41 20.82 99.42 2.41 99.50 1.72 99.75 0.72 90.77 43.74 99.87 0.02 99.41 2.18 97.93 10.16

ASH-B 97.34 14.89 94.78 28.14 98.87 5.28 99.06 3.97 99.68 0.97 90.16 45.32 99.69 0.32 99.11 3.96 97.34 12.86
ASH-B+ 99.23 3.30 97.16 15.87 99.35 2.82 99.44 2.27 99.77 0.61 87.18 55.45 99.91 0.00 99.34 2.45 97.67 10.35

Table 2. Detailed performance of OOD detection methods with and without ATS for DenseNet [8] trained on CIFAR-10 [9].
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Method

OOD-Dataset
SVHN Textures iSUN LSUN LSUN-Crop Places365 MNIST fMNIST Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

AT-only 95.55 20.39 86.38 48.40 89.69 44.97 91.12 43.65 93.61 31.66 50.65 94.87 99.02 0.35 92.39 46.11 87.30 41.30

MSP 75.24 85.16 71.62 86.19 77.05 81.15 77.93 79.54 85.91 62.66 74.57 83.41 71.67 89.37 87.26 59.47 77.66 78.37
MSP+ 96.86 15.42 90.96 45.76 95.30 26.38 95.95 23.31 99.24 3.42 75.30 82.87 99.07 4.08 99.00 4.67 93.96 25.74

ODIN 71.30 94.83 72.14 85.20 86.59 62.12 87.37 60.18 97.08 17.52 78.24 78.66 89.44 56.90 97.49 14.23 84.96 58.70
ODIN+ 96.04 19.71 91.23 42.77 96.26 20.54 96.93 17.09 99.25 3.24 74.79 83.55 99.46 1.52 98.97 4.91 94.12 24.17

MLS 79.13 86.00 70.98 85.51 81.68 78.17 82.70 76.32 96.74 19.43 77.62 79.85 84.95 73.72 97.16 16.75 83.87 64.47
MLS+ 96.86 15.41 90.96 45.66 95.31 26.32 95.95 23.24 99.24 3.42 75.28 82.90 99.07 4.01 99.00 4.66 93.96 25.70

Energy 79.00 86.86 70.79 86.15 81.59 78.82 82.60 77.45 97.10 17.22 77.52 80.23 85.39 71.94 97.49 14.29 83.93 64.12
Energy+ 94.47 25.08 86.38 55.83 92.92 38.60 93.68 36.88 98.96 4.85 62.90 92.75 99.46 0.34 98.42 7.64 90.90 32.75

ReAct 76.77 89.66 75.74 84.17 88.73 56.55 89.90 54.55 85.67 57.61 70.20 85.02 68.19 90.55 91.42 43.30 80.83 70.18
ReAct+ 97.85 10.21 92.01 35.12 95.84 20.37 96.95 15.13 97.48 13.43 66.84 88.00 99.18 1.93 97.54 13.03 92.96 24.65

DICE 83.56 70.06 74.46 68.26 73.11 85.90 72.68 86.98 99.69 1.12 76.38 81.82 96.92 16.39 99.02 4.50 84.48 51.88
DICE+ 96.50 16.02 89.45 47.22 94.62 29.74 95.16 27.63 99.19 3.46 75.71 80.83 99.07 3.93 98.75 5.99 93.56 26.85

ASH-B 89.78 50.45 85.35 55.89 88.26 52.53 88.37 51.73 98.80 6.43 72.78 85.06 97.69 13.74 98.18 9.97 89.90 40.72
ASH-B+ 97.12 13.99 92.32 35.00 94.53 28.49 95.23 25.52 98.84 5.41 68.21 90.70 99.65 0.08 98.41 7.63 93.04 25.85

Table 3. Detailed performance of OOD detection methods with and without ATS for DenseNet [8] trained on CIFAR-100 [9].

Method

OOD-Dataset
iNaturalist SUN Places Textures NINCO fMNIST Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

AT-only 80.85 65.40 77.62 71.87 70.75 80.27 89.60 42.13 65.56 81.17 94.93 42.70 79.89 63.92

MSP 88.42 52.71 81.75 68.56 80.63 71.60 80.46 66.15 79.97 75.96 86.46 64.15 82.95 66.52
MSP+ 92.66 35.99 88.87 45.53 84.85 57.46 94.00 25.73 80.45 67.11 96.56 24.58 89.57 42.73

ODIN 91.38 41.56 86.89 54.02 84.44 62.15 87.57 45.55 77.70 75.13 96.76 19.51 87.46 49.65
ODIN+ 91.78 36.63 88.30 48.24 84.01 59.96 93.42 26.42 77.11 69.16 98.77 4.22 88.90 40.77

MLS 91.13 50.87 86.59 59.87 84.18 65.64 86.40 54.29 80.40 76.62 86.47 69.84 85.86 62.86
MLS+ 92.65 36.01 88.87 45.54 84.85 57.47 94.00 25.73 80.44 67.17 96.56 24.60 89.56 42.75

Energy 90.59 53.96 86.73 58.25 84.12 65.40 86.73 52.30 79.69 77.63 85.32 73.57 85.53 63.52
Energy+ 79.49 65.77 81.92 62.36 75.29 73.29 90.71 35.53 65.87 79.72 86.39 64.47 79.94 63.52

ReAct 96.39 19.55 94.41 24.01 91.93 33.45 90.45 45.85 80.13 71.50 88.70 68.16 90.33 43.75
ReAct+ 93.83 32.14 90.60 40.89 86.62 52.99 94.91 24.77 79.91 68.73 97.84 9.25 90.62 38.13

DICE 94.49 26.64 90.99 36.08 87.73 47.65 90.46 32.46 77.49 74.12 84.17 62.17 87.55 46.52
DICE+ 91.97 34.71 88.39 43.25 83.43 56.01 94.25 24.89 75.85 68.82 96.42 28.49 88.38 42.69

ReAct+DICE 96.04 20.17 93.77 26.61 90.53 38.53 92.42 29.96 73.84 74.69 85.91 64.62 88.75 42.43
ReAct+DICE+ 92.06 34.23 88.88 42.20 83.86 54.38 94.13 26.76 74.12 70.86 96.60 23.33 88.28 41.96

ASH-B 97.32 14.21 95.10 22.11 92.31 33.45 95.50 21.13 82.32 69.39 93.56 43.99 92.69 34.05
ASH-B+ 95.19 24.07 92.37 32.70 88.33 45.63 96.29 18.71 79.93 66.14 97.51 13.33 91.61 33.43

Table 4. Detailed performance of OOD detection methods with and without ATS for ResNet50 [5] trained on ImageNet [3].
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Figure 1. Examples showing potential contamination when using Places365 [20] for OOD detection with a model trained on CIFAR [9]
as ID data. Annotations in blue indicate the corresponding CIFAR [9] classes present in the image, while those in red denote the original
class from the Places365 [20] dataset. Left figure: Samples from classes of the Places365 [20] dataset that overlap with CIFAR-10 [9]
classes. Right figure: Samples from classes of the Places365 [20] dataset that overlap with CIFAR-100 [9] classes.
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Figure 2. Analysis of Places365 [20] OOD detection using Maximum Softmax Probability (MSP) [7] with and without Adaptive Temper-
ature Scaling (ATS) on ResNet18 [5] trained with CIFAR-100 [9]. These exemplary Places365 images were initially categorized as OOD
by MSP, but then reclassified as ID after applying ATS. We set as threshold the score value with 95% recall. Annotations in blue denote
the corresponding CIFAR-100 [9] classes present in the image, while those in red denote the original class from the Places365 [20] dataset.



Algorithm 1 Calibration: Offline eCDF computation

1: Input: Din = {xi, yi}Ni=1 ▷ In-distribution training dataset
2: Input: L ▷ Selected intermediate layers for adjustment
3: Input: f ▷ Trained neural network
4: Output: F̂l,Din , ∀l ∈ L ▷ eCDF per intermediate layer

5: // Compute mean layer activation for all train samples
6: for xi ∈ Din do
7: for l ∈ L do
8: // Feature map of the l-th intermediate layer
9: zl,i ← f(xi)

10: // Mean layer activation
11: µl,i(xi)← 1

ClHlWl

∑Cl
c

∑Hl
h

∑Wl
w max(zl,i(c, h, w), 0),

12: end for
13: end for

14: // Pre-Compute eCDF for intermediate layers
15: for l ∈ L do
16: F̂l,Din ← Pre-compute eCDF from µl,i, i ∈ [1, N ]
17: end for

18: return F̂l,Din , ∀l ∈ L

Algorithm 2 Inference: Test-time OOD score computation
1: Input: x ▷ Test sample
2: Input: f , G ▷ Trained NN, and logit-based OOD scoring function
3: Input: F̂l,Din , ∀l ∈ L ▷ eCDF per selected intermediate layer
4: Output: s(x) ▷ Sample specific OOD score

5: // Calculate layer-specific p-values
6: for l ∈ L do
7: // Feature map of the l-th intermediate layer
8: zl ← f(x)

9: // Mean layer activation
10: µl(x)← 1

ClHlWl

∑Cl
c

∑Hl
h

∑Wl
w max(zl(c, h, w), 0),

11: // p-value per-intermediate layer using two-sided test
12: pl(x)← 2min(F̂l,Din (µl(x)), 1− F̂l,Din (µl(x)))
13: end for

14: // Derive sample specific temperature by aggregating the layer-specific
p-values via Fisher’s method

15: T̂ (x)← −2
∑

l∈L log(pl(x))

16: // Scale logits with sample-specific temperature value and derive OOD
score with given scoring function

17: s(x) = G(f(x) / T̂ (x))

18: return s(x)
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Figure 3. Evaluation of the runtime overhead across three model architectures (ResNet18, Renset50, and DenseNet100) illustrating the
impact of incorporating varying numbers of intermediate layers. Left figure: Overhead when the first l layers are employed for adaptive
temperature scaling. Right figure: Overhead when the last l layers are employed for adaptive temperature scaling.


