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In the following, we provide detailed results accompany-
ing the evaluations reported in the main manuscript, as well
as a breakdown of our runtime analysis.

1. Detailed Results

CIFAR. Table 1, Table 2, and Table 3 provide a compre-
hensive breakdown of the CIFAR [9] results for each of
the eight out-of-distribution (OOD) datasets (SVHN [12],
Textures [2], iISUN [18], LSUN (resized and cropped) [19],
Places365 [20], MNIST [10], and Fashion-MNIST [16]),
supplementing the average results presented in Table 2 of
the main manuscript. Our Adaptive Temperature Scal-
ing method consistently enhances the performance for CI-
FAR [9] against various OOD datasets.

However, an exception is observed with Places365 [20],
where performance is slightly diminished. The observed
discrepancy can be attributed to the inherent similarities be-
tween samples in Places365 [20] and those in the CIFAR [9]
datasets. We manually curated exemplary Places365 [20]
classes that exhibit a striking resemblance to CIFAR’s in-
distribution classes in Fig. 1. Given the semantic similar-
ity or outright overlap of multiple samples with ID classes,
the validity of using the whole Places365 [20] dataset
as an OOD test set is questioned. We further analyzed
Places365 [20] as an OOD test set for ResNet18 trained on
CIFAR-100 [9] in order to investigate the observed drop in
FPR95 performance for this setting (decrease by 4.7% us-
ing MSP with ATS, see Table 1 in the main manuscript). In
Fig. 2, we present samples from Places365 [20] that were
identified as OOD under MSP [7] but were reclassified as ID
upon applying ATS. A closer examination reveals that these
samples have high similarities or overlap with CIFAR-100’s
ID classes. We argue that the observed performance dip
can be ascribed predominantly to these overlapping sam-
ples, further emphasizing the efficacy of ATS.

Across all CIFAR benchmarks, the per-sample temper-
ature used as a standalone method demonstrates promis-
ing results. However, the performance is notably enhanced
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when we use the temperature to scale the logits, increasing
the gap between ID and OOD samples and thereby improv-
ing the model’s overall performance in out-of-distribution
detection.

ImageNet. Table 4 shows the per-dataset (iNaturalist
[15], SUN [17], Places [20], Textures [2], NINCO [1], and
Fashion-MNIST [16]) results for ImageNet [3] (average re-
sults reported in Table 3 in the main manuscript). Our ap-
proach significantly improves the performance of methods
such as MSP [7], ODIN [11], and MLS [6], as they have
a comparatively low baseline. Remarkably, ATS still im-
proves the overall result on strong baseline methods, i.e.,
ReAct [13], DICE [14] and ASH [4], but the improvement is
less pronounced. The limited improvement observed com-
pared to CIFAR, especially on strong baselines, can be at-
tributed to the OOD datasets’ specific characteristics and
the intermediate layer selection process (see Section 4.3 in
the main manuscript). The per-sample temperature alone
shows weak performance on the ImageNet dataset, but the
incorporation of ATS enhances the results. This improve-
ment is particularly prominent when detecting far-OOD
data such as Fashion-MNIST [16], emphasizing the effec-
tiveness of ATS in boosting the robustness of OOD detec-
tion methods.

We also note that ATS consistently improves the per-
formance on NINCO [1]. This is relevant because
NINCO [1] has been cleared from semantically similar sam-
ples, where the OOD-ness is unclear, while OOD datasets
such as Places or iNaturalist [15] contain overlap with Im-
ageNet [3], calling their value as OOD test sets into ques-
tion [1].

Summary. ATS provides a favorable trade-off between
performance on near-OOD and far-OOD datasets. While
ATS generally enhances the robustness of OOD detection,
especially against far-OOD samples, there are combina-
tions of ID and OOD datasets where its inclusion results in
slightly degraded performance. This trade-off highlights the



need for further research on per-sample optimized informa-
tion extraction from the intermediate layers of the network.
Our analysis further shows that using Places365 [20]
as an OOD test set for the CIFAR [9] datasets, and fur-
ther supported by Bitterwolf et al. [1] regarding overlaps
with ImageNet [3], not all datasets are suited as impeccable
OOD test sets. Nevertheless, we opted to include all rele-
vant datasets in our evaluation for a comprehensive evalua-
tion and to maintain consistency with state-of-the-art bench-
marks. This leads to an important realization: there is a
pressing need for more rigorous OOD test set design and
consequent research, ensuring precise OOD evaluation.

2. Computational Details

In this section, we perform a runtime analysis of our ap-
proach, detailed in Algorithm 1 and Algorithm 2, to under-
stand the practical implications. These algorithms provide a
detailed procedure for the calibration and inference phases
of our Adaptive Temperature Scaling approach.

It should be emphasized that the calibration phase (Al-
gorithm 1) involves pre-computing the eCDF for each cho-
sen intermediate layer based on the in-distribution training
set and is conducted offline, thereby not contributing to the
computational overhead during test-time. During inference
(Algorithm 2), the overhead primarily arises from comput-
ing the mean layer activation, which is the “bottleneck” of
our approach and scales linearly with the number of acti-
vations. The subsequent steps, including p-value retrieval,
their aggregation, and temperature scaling, are relatively in-
consequential in terms of computational demand.

We conducted an experiment to measure the inference
time with and without ATS for three models. The exper-
iment measures the inference time, including temperature
calculation and logit scaling, but excludes the logit-based
OOD scoring function, comparing the overhead against a
normal forward pass. For a precise evaluation, we mea-
sure inference times across 10k iterations, preceded by 1k
warmup runs using a synthetic input.

Figure 3 depicts the runtime overhead of ATS for three
models: ResNetl8, ResNet50, and DenseNet100, based
on the choice of intermediate layers. In the analysis, we
focus on the initial [ layers (left plot of Fig. 3) and the
concluding [ layers (right plot of Fig. 3) for ATS com-
putations. When layers are selected uniformly across the
model’s depth, the computational overhead remains mod-
erate: 6.18% for ResNetl8, 11.94% for ResNet50, and
4.71% for DenseNet100. Furthermore, Fig. 3 underlines
that while this overhead is acceptable considering the per-
formance gains, shallow layers impose a greater computa-
tional burden due to their large feature dimensions.

Optimizing the runtime overhead is possible by refining
the number of intermediate layers, considering the preserva-
tion of robustness. Building on insights from Section 4.3 of

our main manuscript, it is evident that optimal intermediate
layers for ATS vary depending on the ID vs. OOD datasets.
Harnessing this understanding, a prudential strategy would
dynamically select the best IV layers, harmonizing compu-
tational speed with OOD detection performance. This syn-
ergy accentuates the exciting prospects in fine-tuning layer
choices, signaling the need for further research on adaptive
layer selection strategies.

The experiment is conducted on a server equipped with
an Intel(R) Core(TM) 19-9900X CPU @ 3.50GHz, paired
with an NVIDIA GeForce RTX 3080 GPU. The computa-
tional setup operates on Ubuntu 22.04, incorporating Py-
Torch 1.13, and leveraged CUDA 11.6 and cuDNN 8.3.2.
The standard neural network forward pass and the adaptive
temperature scaling (ATS) operate independently without
contending for computational resources.

We reckon that opportunities exist for even more compu-
tationally efficient implementations of ATS. Thus, the cur-
rent evaluation serves as an initial benchmark for the com-
putational overhead.
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OOD-Dataset
Method SVHN Textures iSUN LSUN LSUN-Crop Places365 MNIST fMNIST Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
) 1 ) 1 0 1 ) 1 1) 1 ) 1 ) 1 0 1 ) 1

AT-only 96.06 17.02 88.46 43.04 9242 32.89 93.67 2879 9749 15.11 59.62 89.57 97.77 12.00 87.75 5545 89.16 36.73

MSP 90.23 65.17 89.64 62.79 9200 5545 9249 53.64 93.83 4471 88.73 6252 93.08 51.57 9349 4810 91.69 55.49
MSP+ 98.33 8.62 9526 2592 9842 7.75 98.73 573 9941 2,61 8755 5223 9946 1.69 9826 9.14 9693 14.21

ODIN 89.96 48.14 8750 51.32 96.89 16.65 9743 13.62 98.18 9.58 89.19 46.73 9942 2.06 98.57 6.66 94.64 24.35
ODIN+ 9796 10.53 94.03 2898 9826 888 98.68 640 9945 228 8272 66.09 9980 024 9823 942 96.14 16.60

MLS 91.36 51.01 89.08 5546 9426 3640 9497 32.10 97.53 1411 90.62 4493 97.13 17.08 97.13 1695 9401 33.50
MLS+ 9833 861 9523 2598 9842 777 98773 574 9942 258 8744 5245 9946 1.67 9826 9.14 9691 14.24

Energy 91.37 50.65 89.03 55.64 9430 3589 9502 3152 97.64 13.41 90.67 4444 9726 16.05 9724 16.09 94.07 32.96
Energy+ 97.22 14.16 9130 39.40 96.56 18.66 97.23 1428 99.17 420 7885 7147 9941 2.02 96.60 19.81 94.54 23.00

ReAct 74776 7620 67.58 80.12 65.41 8247 6503 8239 7433 7042 6561 8148 79.67 65.63 7251 7830 70.61 77.12
ReAct+ 9398 2524 8458 51.61 8856 47.62 8955 4726 9338 30.01 6533 8244 93.06 27.62 8431 5491 86.59 45.84

DICE 72.08 7529 6220 79.64 6343 8755 66.11 8537 9221 2793 60.33 87.08 97.39 1296 90.30 4193 7551 62.22
DICE+ 95.19 2529 8430 53.58 89.70 41.68 9050 41.16 9591 2085 67.86 80.74 9858 6.74 9043 41.14 89.06 38.90

ASH-B  67.08 76.65 6232 81.76 6437 80.72 64.46 8022 7473 63.44 59.64 8587 79.71 60.77 72.63 7171 68.12 75.14
ASH-B+ 87.92 4458 81.05 5732 85.65 49.64 86.69 4935 94.09 2638 6096 86.75 9557 24.18 86.76 51.18 84.84 48.67

Table 1. Detailed performance of OOD detection methods with and without ATS for ResNet18 [5] trained on CIFAR-10 [9]. Method
AT-only denotes the performance when the per-sample temperature is used directly as the OOD detection score. Method+ denotes that
our ATS is applied on top of the method (i.e., rows with gray background). 1/] indicates that larger/smaller values are better. The best
and second-best results for each OOD dataset (i.e., each column) are shown in bold or underlined, respectively. All values are reported as
percentages.

0OOD-Dataset

Method SVHN Textures iSUN LSUN LSUN-Crop Places365 MNIST fMNIST Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

D) 4 I 1 ) 4 D) 4 T 1 D) 4 I 1 T 4 D) 4

AT-only 9727 1296 91.25 3337 9529 2425 9576 2205 97.40 1456 57.85 9090 9899 1.72 9421 3485 91.00 29.33

MSP 88.21 7092 89.65 6220 9443 43.10 9497 3936 9592 30.82 88.69 63.88 93.99 4937 9488 38.00 9259 49.71
MSP+ 98.81 6.00 9651 19.84 9949 2.13 9957 159 99.77 0.69 90.83 4471 99.88 0.02 9945 194 98.04 9.62

ODIN 9241 4553 89.02 4943 99.05 394 9927 221 9934 245 91.79 39.74 9953 099 9893 4.61 96.17 18.61
ODIN+ 98.78 6.37 9631 1991 99.59 1.62 99.67 116 99.77 0.56 89.81 49.24 9994 0.00 9946 177 97.92 10.08

MLS 92.15 4755 8853 5340 9795 10.13 9825 7.70 9921 283 91.78 4046 98.79 420 98.65 6.03 95.66 21.54
MLS+ 98.81 6.00 9651 19.86 99.49 2.13 99.57 160 99.77 0.69 90.81 4477 99.890 0.02 9945 196 98.04 9.63

Energy 9224 4632 8844 53.03 98.01 945 9831 7.16 9929 257 91.83 39.59 9892 353 9874 542 9572 20.88
Energy+ 98.75 6.56 9439 2645 9929 3.00 9936 242 99.75 0.77 8555 5885 99.92 0.0l 9922 312 97.03 12.65

ReAct 9323 4438 92.12 4578 98.15 856 9845 6.17 9930 253 92.09 3947 98.84 444 98.68 5.81 96.36 19.64
ReAct+ 9896 490 97.08 1697 9947 239 9955 174 99.76 0.78 90.70 4555 99.87 0.02 9943 211 9810 9.31

DICE 95.58 2566 89.16 43.69 9927 3.03 9942 208 9993 0.22 91.00 4321 9997 0.00 99.62 151 96.74 14.92
DICE+ 9829 970 96.41 2082 9942 241 9950 1.72 99.75 072 90.77 4374 9987 0.02 9941 218 9793 10.16

ASH-B  97.34 1489 9478 28.14 9887 528 99.06 397 99.68 097 90.16 4532 99.69 032 99.11 396 97.34 12.86
ASH-B+ 99.23 330 97.16 15.87 9935 282 9944 227 99.77 0.61 87.18 5545 9991 0.00 9934 245 97.67 1035

Table 2. Detailed performance of OOD detection methods with and without ATS for DenseNet [8] trained on CIFAR-10 [9].
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OOD-Dataset
Method SVHN Textures iSUN LSUN LSUN-Crop Places365 MNIST fMNIST Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
) 1 ) 1 0 1 ) 1 1) 1 ) 1 ) 1 0 1 ) 1

AT-only 95.55 20.39 86.38 4840 89.69 4497 91.12 43.65 93.61 31.66 50.65 9487 99.02 035 9239 46.11 8730 41.30

MSP 7524 8516 71.62 86.19 77.05 81.15 7793 79.54 8591 62.66 7457 8341 71.67 89.37 8726 5947 77.66 78.37
MSP+ 96.86 1542 9096 4576 9530 2638 9595 2331 9924 342 7530 8287 99.07 4.08 99.00 4.67 9396 2574

ODIN 7130 9483 72.14 8520 86.59 62.12 8737 60.18 97.08 17.52 7824 78.66 89.44 5690 9749 1423 8496 58.70
ODIN+ 96.04 19.71 91.23 4277 96.26 20.54 9693 17.09 99.25 324 7479 8355 9946 152 9897 491 9412 24.17

MLS 79.13  86.00 70.98 85.51 81.68 78.17 8270 7632 96.74 1943 77.62 79.85 8495 7372 97.16 16.75 83.87 64.47
MLS+ 96.86 1541 9096 4566 9531 2632 9595 2324 9924 342 7528 8290 99.07 401 99.00 4.66 93.96 25.70

Energy  79.00 86.86 70.79 86.15 81.59 7882 8260 77.45 97.10 1722 77.52 8023 8539 7194 9749 1429 8393 64.12
Energy+ 94.47 25.08 86.38 5583 9292 38.60 93.68 3688 9896 485 6290 9275 9946 034 9842 7.64 9090 32.75

ReAct 76.77 89.66 75774 84.17 88.73 56.55 89.90 5455 8567 57.61 7020 85.02 68.19 90.55 9142 4330 80.83 70.18
ReAct+ 97.85 10.21 92.01 35.12 95.84 20.37 9695 1513 9748 1343 66.84 88.00 99.18 193 9754 13.03 9296 24.65

DICE 83.56 70.06 7446 6826 73.11 8590 7268 8698 99.69 1.12 7638 81.82 96.92 1639 99.02 4.50 8448 51.88
DICE+ 96.50 16.02 89.45 4722 9462 29.74 9516 27.63 99.19 346 7571 80.83 99.07 393 9875 599 9356 26.85

ASH-B  89.78 5045 8535 5589 8826 5253 8837 51.73 9880 643 7278 8506 97.69 1374 98.18 997 89.90 40.72
ASH-B+ 97.12 1399 92.32 35.00 9453 2849 9523 2552 9884 541 6821 90.70 99.65 0.08 9841 7.63 93.04 2585

Table 3. Detailed performance of OOD detection methods with and without ATS for DenseNet [8] trained on CIFAR-100 [9].

OOD-Dataset

Method iNaturalist SUN Places Textures NINCO fMNIST Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

T { T { T { 1) { 1) { 1) { 1) {

AT-only 80.85 6540 77.62 71.87 70.75 8027 89.60 42.13 6556 81.17 9493 4270 79.89 63.92
MSP 88.42 5271 8175 6856 80.63 71.60 80.46 66.15 79.97 7596 8646 64.15 8295 66.52
MSP+ 92.66 3599 88.87 4553 84.85 5746 94.00 2573 8045 67.11 96.56 24.58 89.57 42.73
ODIN 91.38 4156 86.89 54.02 84.44 62.15 87.57 4555 77.70 75.13 96.76 19.51 87.46 49.65
ODIN+ 91.78 36.63 8830 4824 8401 5996 9342 2642 77.11 69.16 98.77 4.22 883.90 40.77
MLS 91.13 50.87 86.59 59.87 84.18 65.64 86.40 5429 8040 76.62 8647 69.84 8586 62.86
MLS+ 92.65 36.01 8887 4554 8485 57.47 9400 2573 8044 67.17 96.56 24.60 89.56 42.75
Energy 90.59 5396 86.73 5825 84.12 6540 86.73 5230 79.69 77.63 8532 7357 8553 6352
Energy+ 7949 65.77 8192 6236 7529 7329 90.71 3553 6587 79.72 86.39 6447 79.94 63.52
ReAct 96.39 19.55 94.41 24.01 9193 3345 9045 4585 80.13 7150 88.70 68.16 9033 43.75
ReAct+ 93.83 32.14 90.60 40.89 86.62 5299 9491 2477 7991 68.73 97.84 925 90.62 38.13
DICE 9449 26.64 9099 36.08 87.73 47.65 9046 3246 7749 74.12 84.17 62.17 8755 46.52
DICE+ 9197 34771 8839 4325 8343 56.01 9425 24.89 7585 68.82 9642 2849 8838 42.69

ReAct+DICE  96.04 20.17 93.77 26.61 90.53 3853 9242 2996 73.84 7469 8591 64.62 88.75 4243
ReAct+DICE+ 92.06 34.23 88.88 4220 83.86 5438 94.13 26.76 74.12 70.86 96.60 23.33 8828 4196

ASH-B 97.32 1421 95.10 22.11 9231 3345 9550 21.13 8232 69.39 93.56 43.99 92.69 34.05
ASH-B+ 95.19 24.07 9237 3270 8833 4563 9629 18.71 7993 66.14 97.51 1333 91.61 3343

Table 4. Detailed performance of OOD detection methods with and without ATS for ResNet50 [5] trained on ImageNet [3].
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Places365 samples with high Places365 samples with high

similarity to CIFAR-10 similarity to CIFAR-100
airplane ship deer skyscraper bicycle train

(airfield) (boat deck) (farm) (downtown) (highway) (railroad track)

truck horse automobile Cloud' dolphin suower
(highway) (farm) (street) (sky) (underwater-ocean deep) (vineyard)

Figure 1. Examples showing potential contamination when using Places365 [20] for OOD detection with a model trained on CIFAR [9]
as ID data. Annotations in blue indicate the corresponding CIFAR [9] classes present in the image, while those in red denote the original
class from the Places365 [20] dataset. Left figure: Samples from classes of the Places365 [20] dataset that overlap with CIFAR-10 [9]
classes. Right figure: Samples from classes of the Places365 [20] dataset that overlap with CIFAR-100 [9] classes.

streetcar cloud streetcar girl mountain
(auto_showroom) (sky) (highway) (street) (ski resort)

streetcar castle train "~ tractor man
(parking lot) (sky) (railroad track) (trench) (restaurant kitchen)

Figure 2. Analysis of Places365 [20] OOD detection using Maximum Softmax Probability (MSP) [7] with and without Adaptive Temper-
ature Scaling (ATS) on ResNet18 [5] trained with CIFAR-100 [9]. These exemplary Places365 images were initially categorized as OOD
by MSP, but then reclassified as ID after applying ATS. We set as threshold the score value with 95% recall. Annotations in blue denote
the corresponding CIFAR-100 [9] classes present in the image, while those in red denote the original class from the Places365 [20] dataset.



Algorithm 1 Calibration: Offline eCDF computation

Algorithm 2 Inference: Test-time OOD score computation

1: Input: Djy = {x;,y; ¥, > In-distribution training dataset ~ 1: Input: x ) ) I>.Test sample
2: Input: £ > Selected intermediate layers for adjustment 2 Input: f, G > Trained NN, and logit-based OOD scoring function
3: Input: f > Trained neural network ~ 3: Imput: F; p, , Vi€ L > eCDF per selected intermediate layer
4: Output: I:“l;Dm, Vie L > eCDF per intermediate layer ~ 4: Output: s(x) > Sample specific OOD score
5: // Compute mean layer activation for all train samples 5: // Calculate layer-specific p-values
6: for x; € Dj, do 6: for! € Ldo
7. forl ¢ £ do 7T: // Feature map of the [-th intermediate layer
8: /l Feature map of the [-th intermediate layer 8: z; + f(x)
9: Z] < f(XZ)
9: // Mean layer activation
10: // Mean layer activation o 10: (%) m chl hHl ZX‘}’: max(z;(c, h,w),0),
11: pi(x0) 4= gt 6t Syt Yt max(a,i (e, hyw), 0),
. 11: /] p-value per-intermediate layer using two-sided test
12: end for p . 4 gl
13: end for 122 pu(x) = 2min(F,p, (i (x)), 1 = Fi,p,, (1 (x)))
13: end for
14: /I Pre-Compute eCDF for intermediate layers . . . .
15: forl € £ do 14: // Derive sample specific temperature by aggregating the layer-specific
16: £y p,, ¢ Pre-compute eCDF from p; 4,7 € [1, N] p-values via Fisher’s method
17: end for 15: T'(x) = =2 Zzeﬁ log(p;(x))
18: return £} p. , VI € L 16: // Scale logits with sample-specific temperature value and derive OOD
i’ score with given scoring function
17: s(x) = G(f(x) / T'(x))
18: return s(x)
124 12+
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E E
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Figure 3. Evaluation of the runtime overhead across three model architectures (ResNetl8, Renset50, and DenseNet100) illustrating the
impact of incorporating varying numbers of intermediate layers. Left figure: Overhead when the first [ layers are employed for adaptive
temperature scaling. Right figure: Overhead when the last [ layers are employed for adaptive temperature scaling.



