
AU-Aware Dynamic 3D Face Reconstruction from Videos with Transformer
Supplementary Material

Chenyi Kuang1, Jeffrey O. Kephart2, Qiang Ji1
1 Rensselaer Polytechnic Institute, 2 IBM Thomas J. Watson Research Ctr.

{kuangc2,jiq}@rpi.edu, kephart@us.ibm.com

1. AU Spatial Correlations
We design an AU Spatial Correlation Module that takes

geometry-based AU tokens as input, which are generated
by applying multiple pre-defined vertex masks {Mau

k }Nk=1

to the input 3D mesh sequences {Sj}Lj=1. The geometry-
based AU-tokens vk are expressed by

vk = MLP(Mau
k ⊗ (Sj − S̄)), k = 1, · · · , N (1)

where N is the total number of AUs. For each AU mask,
a relevant face region consisting of a subset of vertices on
3D mesh is pre-defined. Elements in Mk corresponding to
identified active vertices are assigned to “1”, and “0” oth-
erwise. Then we perform a smoothing of the weights in
Mk for those boundary vertices to ensure the transition be-
tween ”active” vertices and ”inactive” vertices are smooth.
In Fig. 1, we provide the visualization of Mk for 12 AUs
that are involved in our experiments. The different active
regions for different AUs, as an integrated prior knowledge
in the model, reflects AU spatial correlations in terms of
AU locations. For example, AU1 (Inner Brow Raiser) and
AU2 (Outer Brow Raiser) are highly correlated as they have
large number of overlapped active vertices. This is a gen-
eral prior knowledge that can be applied universally, as the
two AUs are controlled by the same facial muscles anatom-
ically. Another kind of AU spatial correlations relates to
the AU activation level, which will be learned by our model
during the training. For example, a highly activated AU12
(Lip Corner Puller) will result in a subsequent activation of
AU6 (Cheek Raiser), but not for the lower-intensity case.
The Mk are not updated during training or testing.

2. More Quantitative Evaluation
2.1. AU recognition

In addition to BP4D [6] and DISFA [4], we also show
the performance of our model on Aff-Wild2 [3], which is
a challenging dataset for expression recognition or AU de-
tection due to various head pose, illumination and occlu-
sion. We use 60% of Aff-Wild2 training data to train the

model, for improving the model generalization ability un-
der different environments. In Table. 1, we compare with
two most recently published papers [1,5] performing multi-
modal (image/video and audio) AU detection on Aff-Wild2
dataset. As we only use partial training data, in this pa-
per we provide evaluations on the official validation set of
Aff-Wild2. It shows that with the temporal model ap-

Table 1. Performances comparison with SOTA AU detection mod-
els. We show the average F1 score on the official validation set of
Aff-Wild2. The CM is short for ”correlation module”. The last
row represents our final model and the video input represents a
temporal model and image input indicates a spatial model.

Method Input Data F1 score(in %)
Competetion baseline [2] Image 39%

[5] Audio 32.3%
[5] Audio + CM 34.4%
[5] Video 39.8%
[5] Image + CM 47.9%
[5] Video + CM 50.1%
[5] Video + Audio + CM 52.3%

Transformer [1] Image + Audio 52.5%
ours: T S only 3D Mesh 35.2 %
ours: T t only Video 41.2%

ours: T t + T S Video + 3D Mesh 40.8%

plied directly on videos, our performance is slightly bet-
ter than [5]. But only using the mesh or combining the
video and mesh will not contribute to performance improve-
ment. We analyze the results carefully and identify the
causes. As we have no access to any ground-truth 3D mesh
data, we use a pre-trained reconstruction model to gener-
ate the input 3D mesh (coarse mesh) for every frame. The
coarse mesh can be poorly aligned to the image by inac-
curate head pose (error propagated from the coarse recon-
struction model). However, in our model, only expression
parameters are updated by the output embeddings of tem-
poral module and spatial module and the final refined mesh
sequences predicted by the transformer may remain to be
incorrectly aligned. However, on BP4D and DISFA, our re-
sults prove to be better than SOTA methods, since the coarse
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Figure 1. 3D AU vertex mask {Mk}Nk=1, which will be applied on 3D face mesh to generate geometry-based AU tokens. Examples of 12
AUs are displayed.

reconstruction model perform well on these two datasets.
This inspires us a promising direction to further improve
our model, which is to refine the head pose alignment on
Aff-Wild2 using our Temporal Module.

2.2. Inference time

We compare the inference time on image sequences and
compare with SOTA 3D reconstruction model. On the eval-
uation set of multiface, we compare the average running
time on a 20-frame sequence using different models in Ta-
ble. 2, including DECA, EMOCA and DFNRMVS. Com-
pare to EMOCA, which is also built on top of DECA basic
model, our model has faster inference speed.

3. More Qualitative Results
In addition to quantitative AU detection results, we also

show that our model can generate smooth and stable dy-
namic 3D face reconstruction which is also AU-aware. We
provide more qualitative results in Fig. 2 and Fig. 3. The ac-
tivated AUs inferred based on the geometry are also shown
in the figure.

- DECA EMOCA DFNRMVS Ours
Test time (20 frames) 0.2105s 0.3052s 0.2642s 0.2794s

Table 2. Inference time comparison



AU12: lip corner pulling


AU4: Inner Brow Lowerer

AU15: Lip Corner Depressor

Figure 2. Dynamic 3D face reconstruction on validation data of DISFA.



AU10: upper lip raise

AU6: cheek raise

AU9: nose wrinkle


AU15: lip corner depress

AU27: Mouth Stretch

Figure 3. Dynamic 3D face reconstruction on validation data of BP4D.
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