
Supplementary Material
TEXTRON: Weakly Supervised Multilingual Text Detection through Data Programming

1. Why TEXTRON

We showcase TEXTRON as a framework to carry out
multilingual text detection through Data Programming,
where users can plug various text detection methods into
a weak supervision-based learning framework. Following
are a few salient features of weakly supervised TEXTRON
that benefit the use-case of text detection.

• Less Dependency on Labeled Data As described in
our methodology, we do not employ the usage of la-
beled data for carrying out text detection. We use un-
supervised quantitative assessment of Labeling Func-
tions (LFs) for effective training of parameters and
qualitative inspection of unlabeled validation sets for
determining best hyperparameters which is explained
in Section 6.

• Faster than conventional methods Conventionally to
perform text detection we need to train a DL model
that is hungry for labeled data. And in scenarios where
labeled data is limited or unavailable, we need manual
intervention to annotate data. This is far more time-
consuming and requires a lot of effort and expertise
than our Data programming-based paradigm that TEX-
TRON offers. Inference of TEXTRON can help in
faster generation of labeled data or directly assist in
the detection of text of multiple scripts.

• Enforcing the power of Weak Supervision Since
documents by themselves come in a wide range of lay-
outs, fonts, styles, languages, and modalities, it is ac-
ceptable to have a little bit of qualitative noise in the
labels for the data on which new models are intended
to be trained. TEXTRON is an accurate example of
combining several noisy rule-based LFs to generate
high-quality data faster, by reducing the challenges as-
sociated with the availability of manually labeled data.
Eventually, it is the interplay of these noisy weak la-
bels generated by different text detection methods that
contribute to a more accurate and generic text detec-
tion pipeline, hence having a weak supervision-based
approach benefits the use-case of TEXTRON.

• More control to the data programmer Unlike a strict

(1 or 0) pixel-based voting mechanism (like our MBV
baselines) or labeled data-dependent traditional ML-
based ensemble approaches, TEXTRON offers to in-
duce strengths and weaknesses of LFs in the aggrega-
tion methods. The data programmer who designs the
LFs is well aware of what kind of cases it labels in the
documents and is also aware of when and how it per-
forms efficiently or fails to perform well. LF designers
control the region of influence of LFs by making it trig-
ger for specific scenarios and abstaining from the rest.
This also makes the system more flexible by design-
ing countless LFs and using their strengths to detect
text. The control of the data programmer is also exer-
cised by setting up quality guides by mentioning to the
TEXTRON aggregator the fraction of times the LF will
trigger and label pixels appropriately.

• Curation of datasets for low-resource scripts Esti-
mating a good set of hyperparameters for LFs followed
by the inference of TEXTRON8LF model can help in
creating text detection datasets for low-resource lan-
guages which can be used for further downstream
training tasks.

2. Datasets Statistics
This section gives tabular information on various train-

ing sets, validation sets, and test sets used. Tables 1, 2 and
3 give the concerned information respectively. There are
no common samples between training, validation, and test
sets. We use training and validation set images in unlabeled
form. We have used the labels on the test sets only to report
our performance.

3. Complementary LFs Design
Labeling Functions (LFs) are conventionally weak su-

pervision based functions that generate noisy labels. In our
context, LFs are used to mark regions of document image
as TEXT or NON-TEXT regions. Similar to the five LFs
described in Figure 1, we have also defined and used the
corresponding five complementary LFs which basically are
associated with the NON-TEXT class, the outputs of which
are presented in Figure 2. As stated, the complementary

1



Name Langauge Modality Image Composition Size Use of Labels
T1 English Printed Randomly selected from Docbank [4] 22454 No
T2 English Printed 244 of Docbank [4], 100 of Funsd [3], 100 of CTDAR [2] 444 No
T3 Sanskrit Printed Sanskrit Book [1] 215 No
T4 Indian Handwritten Kannada and Telugu from PhDIndic [6] 41 No
T5 Mixed Composed of T2, T3 and T4 defined above 700 No

Table 1. Overview of different training datasets

Name Langauge Modality Image Composition Size Use of Labels
V1 English Printed 45 of Docbank [4], 40 of Funsd [3] and 40 of CTDAR [2] 125 No
V2 Malayalam Printed Malayalam Textbooks [5] 10 No
V3 Sanskrit Printed Sanskrit Book [1] 85 No
V4 Indian Handwritten Kannada and Telugu from PhDIndic [6] 90 No

Table 2. Overview of different validation datasets

LFs use exactly the same algorithm proposed in the funda-
mental LFs. However, the only difference is that they help
to label the concerned set of pixels with NON-TEXT class.
All ten LFs are triggered on the black region pixels, while
they abstain from labeling the white region pixels.

4. Unsupervised Assessment

While choosing the best-performing TEXTRON LF set,
we performed extensive experiments using different com-
binations of CV-based LFs as well as the LFs derived
from pre-trained DL models on different sizes of non-
overlapping subsets of training set T1 (Refer Table 1). We
analyzed the unsupervised performance measures of the ten
LFs designed as mentioned in Section 3. Figure 3 shows
coverage, overlaps, and conflicts for each LF as explained
in the review copy. Ideally, a good LF will have signifi-
cant coverage, high overlap, and fewer conflicts. While ex-
perimenting we saw that the Image Edge-Based LF had an
extremely low coverage for TEXT pixels. Further, the cov-
erage and overlap for this LF were approximately the same
for almost all images. In other words, almost all the pix-
els that were labeled as TEXT by this LF were labeled by
some other LF too. This also makes sense as the black pix-
els in Figure 1f are triggered by many other LFs. Also, the
corresponding complementary LF had relatively high con-
flicts. This is also qualitatively observed in Figure 2f, as a
lot of these black triggered pixels also point to regions of
another class. So we dropped this LF and its corresponding
complementary LF from the best-performing set and ana-
lyzed further for the remaining eight LFs. These eight LFs
included four fundamental LFs namely pre-trained DBNet,
Tesseract-based LF, Contour-based LF, and Canny Filter-
based LF along with their complementary LFs. Figure 4
presents the three unsupervised performance measures for
these LFs on a random image of the Docbank dataset. The

fundamental LFs that labeled the text pixels had less (yet
significant) coverage which was a favorable scenario as the
amount of TEXT pixels in any generic document page is
much less as compared to the NON-TEXT pixels. Similarly,
all our chosen complementary LFs have a high percentage
of coverage and overlap, both of which are above 80% for
almost every image. We have performed a similar kind of
analysis with various unlabeled images from Training sets
T1 and parts of T2, T3, and T4 as described in Table 1 for
handwritten and printed Indian language text training sets as
well. All kinds of analysis and visual inspection of outputs
have convinced us to use TEXTRON8LF .

5. Subsequent Training
With this newly defined TEXTRON8LF configuration, we

train our graphical model (parameterized by θ) for the train-
ing objective on train set T5 mentioned in Table 1. We try
to optimize the training objective for 50 epochs by keeping
a constant learning rate of 0.01 for each unlabeled image in
the train set. Once the graphical model is trained for these
700 unlabeled images, we end up freezing the parameters
and thus θ remains untouched for further experimentation.

6. Role of Validation Datasets
We further experimented on our various validation sets

described in Table 2. This included tweaking the LF qual-
ity guides and their hyperparameters for an already trained
TEXTRON8LF model. The reason we need validation sets
is to tune the LF hyperparameters which include the fol-
lowing:

• Width Shrinkage: The width shrinkage takes a value
between 0 and 1 indicating the factor to which the
widths of all the bounding boxes need to be shrunk
during the LF application stage. Ideally, for documents



Name Langauge Modality Image Composition Size Use of Labels
D1 English Printed Docbank [4] Test Sample 100 *Yes
D2 Malayalam Printed Malayalam Books [1] 200 *Yes
D3 Tamil Printed Tamil Books [1] 225 *Yes
D4 Gujarati Printed Gujarati Books [1] 323 *Yes
D5 Devanagari Handwritten Devanagari from PhDIndic [6] 220 *Yes

Table 3. Overview of different test sets where * indicates usage of labels only for evaluation purpose

(a) Input Image (b) DBNet based LF (c) Contour based LF (d) Canny Filter LF (e) Tesseract based LF (f) Image Edges LF

Figure 1. Binary Image Outputs for different Labeling Functions

in which words in the same line have less amount of
space between them, we need more width shrinkage to
preserve word level demarcation in LF outputs.

• Height Shrinkage: The height shrinkage takes a value
between 0 and 1 indicating the factor to which the
heights of all the bounding boxes need to be shrunk
during the LF application stage. Ideally, for documents
in which words in consecutive lines are closely spaced,
we need more height shrinkage to preserve line-level
demarcation of words in LF outputs. If this shrinkage
is insufficient, then TEXTRON might end up giving a
single box engulfing words of different lines that are
closely spaced as seen in Figure 5

• Contour Thickness: This is a hyperparameter used
by 2 LFs namely the contour-based LF to mark the
TEXT region and complementary contour-based LF to
mark the NON-TEXT region. The thickness (usually
set to 4) determines how thick contours will engulf the
text pixels joining the pixels having the same inten-
sity. Lesser thickness will lead to fragmented boxes
or character-level boxes. Setting unreasonably greater
thickness will lead to a loss of word-level demarca-
tion as it might engulf more closely spaced words in
one box. The optimal thickness will generate contours
thick enough to engulf the entire word together.

• Edge Thickness: This is a hyperparameter similar in

significance to contour thickness as described above.
The only difference is that it is used by 2 other LFs
namely the canny filter-based LF to mark the TEXT re-
gion and complementary canny filter-based LF to mark
the NON-TEXT region. The thickness is usually set ei-
ther equal to contour thickness or one less than it. Be-
cause the canny filter already detects edges along the
words before contour-based post-processing, it does
add to the amount of thickness of edges detected along
the word pixels beforehand. Hence, it is advisable to
keep this parameter lesser than or equal to the contour
thickness.

6.1. Why do we need hyperparameters for LFs

All the above-mentioned hyperparameters are responsi-
ble for LF outputs and thereby greatly influence the qual-
ity of TEXTRON output. Even though we have trained the
model TEXTRON8LF with parameters θ learned for every
LF, it is still not sufficient to capture the variety of writ-
ing styles in different forms of documents. This is because
the TEXTRON8LF model works on aggregating the outputs
of different LFs with parameters θ but in order to capture
word-level demarcation of diverse document images, some
changes are needed in the LF application stage itself. These
changes are controlled by the LF hyperparameters that in-
fluence LF outputs. These altered LF outputs (binary maps)
are in turn provided to TEXTRON8LF for the aggregation
stage. For example, handwritten text may not be able to



(a) Input Document
Image

(b) Complementary
DBNet based LF

(c) Complementary
Contour-based LF

(d) Complementary
Canny Filter LF

(e) Complementary
Tesseract based LF

(f) Complementary Im-
age Edges LF

Figure 2. Binary Image Outputs for Complementary Labeling Functions

Figure 3. Unsupervised quantitative assessment on the ten LFs included in the experimentation displaying coverage, overlaps, and conflicts
for each LF

maintain lines of words with uniform spacing and can get
inclined so for detecting these words, we might need more
height shrinkage. On the other hand, printed words have
uniform line spacing and can do with lesser height shrink-
age. Since a plethora of documents, scripts, fonts, and
modalities exist we need some domain knowledge to lever-
age multilingual text detection. This is precisely the role of
validation set which can give you a set of effective hyperpa-
rameters for certain languages or kinds of documents with

particular layouts and styles of writing. This also minimizes
the need to have multiple physical models for different lan-
guages.

6.2. How to perform Hyperparameter tuning with
unlabeled Validation Sets

Our experimentation involved tuning hyperparameters.
Width shrinkage was done by 10% (shrinkage factor was
set as 0.9) for all the experiments and was considered opti-



Figure 4. Unsupervised quantitative assessment on the eight LFs included in the experimentation displaying coverage, overlaps, and
conflicts for each LF

Figure 5. TEXTRON output for Contour Thickness 5 for Docbank Image

mal for all languages in Validation sets V1 to V4 (described
in Table 2). For printed text, the height shrinkage factor was
set to 0.8 for all the page outputs of TEXTRON8LF , and the
LFs were able to keep boxes of distinct lines separate as re-
quired. However, for hand handwritten text validation set
V4, we observed a similar problem encountered as shown
in Figure 5. Hence we needed to tune this factor and shrink
the heights of bounding boxes more for getting good val-
idation results for handwritten text. Height shrinkage by
30% (setting the value to 0.7) was suitable for handwrit-
ten text. Note that, as this validation set was unlabeled, we
relied completely on visual inspection of outputs for deter-
mining the quality of text detection. As this is a weakly
supervised process, some qualitative noise was acceptable
during the inspection of final outputs. This not only helps to

determine language-specific or font-specific parameters for
a new or similarly displayed text but also reduces the need
for labeled data. Hence all four of our validation sets were
considered candidates to determine effective thickness and
shrinkage factors for similar modalities and scripts of text.
Further, we also experimented with thickness factors where
contour thickness varied from 2 to 6 and edge thickness var-
ied from 1 to 5 on validation sets V1 to V4. After visual
inspection of outputs as shown in Figure 6, we determined
the concerned thicknesses for different types of documents.
After tuning, we chose the hyperparameters of Validation
Set V1 to test on Docbank test set D1 to report our results.
As both V1 and D1 contained the same type of printed En-
glish documents, we believe the hyperparameters tuned for
V1 will help enhance the performance of Test set D1. Sim-



Dataset Height
Shrunk By

Contour
Thickness

Edge
Thickness

Docbank 20% 4 2
Malayalam 20% 5 4

Tamil 20% 4 3
Gujarati 20% 4 3

Devanagari 30% 5 5

Table 4. Hyperparameters of TEXTRON8LF for different datasets

ilarly, printed Indian language text was considered one of
the document types for which we used Validation sets V2
and V3 to determine the best hyperparameters. As a result,
the validation set V2 (Printed Malayalam) was considered
to be a candidate set of hyper-parameter tuning for Test Set
D2 (all test sets are described in Table 3)). Also, the results
of test sets D3 (Printed Tamil) and D4 (Printed Gujarati)
were evaluated with hyperparameters tuned for Validation
set V3. Finally, for handwritten text, we used Validation
set V4 (Telugu and Kannada handwritten) to determine the
best shrinkage and thickness parameters. These parame-
ters were used for the inference stage of TEXTRON8LF on
Test set D5 composed of Devanagari handwritten text. Once
the model was able to perform well through hyperparameter
tuning for a sufficiently large number of images from Val-
idation sets, we eventually used this saved TEXTRON8LF

model and tuned hyperparameters for inference on unseen
test sets.

7. Hyperparameters for Inference
In this section, we mention the best-performing set of

hyperparameters for TEXTRON8LF that have been tuned on
validation sets as described in Section 6. For all the test
sets mentioned in Table 3, we apply 10% width shrinkage
as the preprocessing during the LF application stage. Addi-
tionally, the hyperparameters of height shrinkage, contour
thickness, and edge thickness that were determined for dif-
ferent themes of documents are mentioned in Table 4. Using
these TEXTRON8LF configurations, we have inferred and
reported the results on unseen test sets in the review copy.
We also present additional results and insights in the fol-
lowing Section 8.

8. Results and Discussions
In this section, we present the performance of our

TEXTRON8LF model using various combinations of qual-
ity guides and hyperparameters on the various test sets de-
scribed in Table 3.

8.1. Classwise Results on Docbank

The Docbank test set D1 as described in Table 3 has
100 images and every page has bounding boxes anno-

Class Samples DBNet MBV TEXTRON8LF

Date 9 100.00 100.00 100.00
Author 45 98.88 88.17 96.70
Title 71 91.18 54.19 75.00

Section 435 92.63 81.73 97.45
List 478 87.29 89.03 88.40

Abstract 740 91.30 92.51 92.68
Footer 870 91.35 86.01 96.00

Caption 1317 87.98 89.67 88.31
Table 2669 58.24 50.51 50.59

Equation 4190 17.66 32.54 22.08
Reference 5571 94.38 94.07 94.18
Paragraph 38828 89.39 88.76 90.12

Overall 55223 84.92 84.51 85.21

Table 5. Docbank Classwise F1 Scores (in %) for IOU 0.5

tated for several classes. We assign ’text’ predictions
of TEXTRON8LF with Docbank classes based on the
class of the ground truth that has the highest IOU with
TEXTRON8LF prediction. We evaluate and present the re-
sults of these eleven classes. Table 5 presents a compari-
son of the classwise F1 scores of the word-level bounding
boxes detected by the DBNet and MBV baseline against
TEXTRON8LF . We have carried out this evaluation with an
IOU threshold of 0.5. Our model not only performs better
for half of the classes but also shows an overall improve-
ment compared to the baseline performances. However,
TEXTRON8LF performs poorly on the title class as titles
generally have a different and larger font; CV-based LFs fail
to unify title words in one bounding box. We can tweak the
quality guides or include more relevant LFs in the paradigm
to work on such limitations. Besides, there is also a class
imbalance observed in the test set since classes such as date,
author and title make up less than 1 percent of all bounding
boxes, owing to which performance drop for those classes
seems significant.

8.2. Performance on Devanagari Handwritten Text
Detection

In this section, we evaluate and present the performance
of TEXTRON8LF on the test set D5 mentioned in Table 3.
Tables 6, 7 and 8 show that TEXTRON8LF is able to main-
tain the best performance for Devanagari text detection even
for higher IOU thresholds. This also benefits several down-
stream applications like document searching, information
retrieval, and handwritten text recognition.



(a) Docbank Image from Validation Set V1

(b) CTDAR Image from Validation Set V1

(c) Printed Sanskrit Image from Validation Set V3 (d) Handwritten Telugu Image from Validation Set V4

Figure 6. Predictions during TEXTRON8LF Learning Phase from Validation Sets

Approach P R F
DBNet 72.84 62.33 67.17

Tesseract 60.29 65.89 62.97
MBV 57.05 68.76 62.36

TEXTRON8LF 69.24 74.51 71.78

Table 6. Results with IOU 0.5 on Handwritten Devanagari Text

Approach P R F
DBNet 61.34 52.49 56.57

Tesseract 46.19 50.48 48.24
MBV 49.47 59.63 54.08

TEXTRON8LF 62.51 67.27 64.80

Table 7. Results with IOU 0.6 on Handwritten Devanagari Text

Approach P R F
DBNet 41.54 35.54 38.31

Tesseract 27.36 29.91 28.58
MBV 37.73 45.48 41.24

TEXTRON8LF 50.50 54.35 52.35

Table 8. Results with IOU 0.7 on Handwritten Devanagari Text

References
[1] Tamil and Malayalam Versions. Yatharth Geeta Indian Lan-

guages, 2018. 2, 3

[2] Liangcai Gao, Yilun Huang, Hervé Déjean, Jean-Luc Meu-
nier, Qinqin Yan, Yu Fang, Florian Kleber, and Eva Lang. Ic-
dar 2019 competition on table detection and recognition (ct-
dar). In 2019 International Conference on Document Analysis
and Recognition (ICDAR), pages 1510–1515. IEEE, 2019. 2

[3] Guillaume Jaume, Hazim Kemal Ekenel, and Jean-Philippe
Thiran. Funsd: A dataset for form understanding in noisy
scanned documents. In 2019 International Conference on
Document Analysis and Recognition Workshops (ICDARW),
volume 2, pages 1–6, 2019. 2

[4] Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu Wei,
Zhoujun Li, and Ming Zhou. DocBank: A benchmark dataset
for document layout analysis. In Proceedings of the 28th In-
ternational Conference on Computational Linguistics, pages
949–960, Barcelona, Spain (Online), Dec. 2020. International
Committee on Computational Linguistics. 2, 3

[5] School of Distance Education. Malayalam: Language, Cul-
ture and Literature. University Of Kerala, 2017. 2

[6] Obaidullah Sk, Chayan Halder, KC Santosh, Nibaran Das, and
Kaushik Roy. PHDIndic 11, page-level handwritten docu-
ment image dataset of 11 official Indic scripts. IEEE Dataport,
2021. 2, 3


	. Why Textron
	. Datasets Statistics
	. Complementary LFs Design
	. Unsupervised Assessment
	. Subsequent Training
	. Role of Validation Datasets
	. Why do we need hyperparameters for LFs
	. How to perform Hyperparameter tuning with unlabeled Validation Sets

	. Hyperparameters for Inference
	. Results and Discussions
	. Classwise Results on Docbank
	. Performance on Devanagari Handwritten Text Detection


