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Overview
The supplementary material contains:

• Loss Functions

• Network Architectures Included in Ablation Studies

• More Qualitative Results

1 Loss Functions
We train the proposed network using L1 loss (L1), and perceptual loss (Lp). The detailed equations of these loss functions
are:

1.1 L1 Loss
L1 loss aims at reduction of the per pixel difference between the output image (IO) and ground truth (IGT ), which can be
formulated as:

L1 = ‖IO − IGT ‖1 (1)

1.2 Perceptual Loss
The perceptual loss (LP ) aims at improving the perceptual quality of the output by calculating the differences between
output and ground truth at various feature levels. The pretrained layers of VGG-16 [1] model are used as feature space
for the loss calculation. The perceptual loss can be represented mathematically as:

LP =
∥∥Φi∈(3,8,15) (IO)− Φi∈(3,8,15) (IGT )

∥∥
1

(2)

where, Φi(•) is ith layer of VGG-16 model.

2 Network Architectures Included in Ablation Studies
Here, we provide the architectural diagrams of each network setting. Figure S 1 represents the network configurations
with additive, concatenation-based and without query modulation. Figure S 2 shows the network diagrams of various
fusion settings. of the main manuscript. Figure S 3 displays the various types of Feed-Forward blocks.

3 More Qualitative Results
We provide more qualitative results on RICE dataset for aerial haze removal in Figure S 4. We compare the qualitative
results with state-of-the-art methods USID [2], MSBDN [3], TSDNet [4], RefineDNet [5], SPA-GAN [6], UFormer [7]
and AIDNet [8]. Further, in Figure S 5, we provide the qualitative results in comparison with existing state-of-the-art
methods TACL [9] and CLUIE [10] for underwater image enhancement on UIEB dataset. As seen from the results, the
proposed method is able to maintain more spatial content and color balance.
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Figure S 1: Network architectures of different types of query modulation mechanisms considered in the ablation study.

Figure S 2: Network architectures of different types of fusion mechanisms considered in the ablation study.

Figure S 3: Network architectures of different types of Feed-Forward blocks considered in the ablation study.
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Figure S 4: Qualitative results comparison with existing state-of-the-art methods on RICE dataset for aerial image dehaz-
ing.
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Figure S 5: Qualitative results comparison with existing state-of-the-art methods on the UIEB dataset for underwater
image enhancement.
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