
A Generative Multi-Resolution Pyramid and Normal-Conditioning 3D Cloth
Draping

Supplementary Material

Hunor Laczkó∗,† Meysam Madadi†,‡ Sergio Escalera†,‡ Jordi Gonzalez∗,†

hunor.laczko@uab.cat, mmadadi@cvc.uab.es, sescalera@ub.edu, jordi.gonzalez@uab.cat
∗Universitat Autònoma de Barcelona, †Computer Vision Center, ‡ Universitat de Barcelona

Barcelona, Spain

In this supplementary material, we provide further de-
tails on the architecture (Sec. 1), training (Sec. 2), building
template UV coordinates (Sec. 3), and additional qualitative
results (Sec. 4).

1. Architecture1

1.1. Baseline

As we showed in Fig. 1 in the main paper, VAEdrape is a
conditional VAE based on ConvNext [1]. ConvNext is made
up of stages, where after each stage the image or its repre-
sentation is downscaled. Each stage can have a different
depth, meaning the number of blocks it contains. We em-
pirically update the number of blocks and features at each
level. In this case, the depths are 3, 3, 3, 9, and 3 with 32,
64, 128, 256, and 128 (= F ) features, respectively. The
baseline receives an input of resolution 512 × 256 and the
encoder ConvNext has five stages, this way the output fea-
tures will have a size 8 × 4 × F . The condition encoders
work similarly. The dimensionality F is set to 128, 16, 32,
and 80 for the VAEdrape latent vector, template garment,
body, and normals condition encoders, respectively. The
combined dimensionality of condition encoders is 128 to
balance between conditioning features and VAEdrape latent
vector. We also use a tanh activation on the conditioning
latent codes to ensure we have the same scale in the feature
space. Finally, all the latent codes are concatenated before
feeding the decoder. For the decoder, we mirror the en-
coder architecture and replace the downsampling step with
upsampling using transposed convolutions. The output size
is the original 512× 256 resolution. We use tanh activation
on the last decoder layer.

1.2. Conditioning autoencoders

We explained conditioning encoders in the baseline ar-
chitecture. However, these encoders are part of their own

1We commit to releasing the code upon the paper’s acceptance.

autoencoders, pretrained and frozen. That means one au-
toencoder is used to train each of the three conditioning in-
puts: template garment, posed body, and normal map. The
encoder parts of these networks will act as the condition en-
coders. When incorporating them in the main pipeline, their
weights are frozen to ensure that the quality of the features
remains intact. We use tanh activation on the last decoder
layer.

The conditioning network for the normal map is the
VAEnorm. The reason for this design is that normals are
not available at inference time. Therefore, we create a gen-
erative pipeline for them such that we can sample from it at
inference time. VAEnorm itself is conditioned on the tem-
plate garment and posed body UV images. This is because
we want the normal features to be disentangled from the
other conditioning variables.

1.3. Pyramid

The pyramid model is built using several VAEdrape mod-
els of varying image resolutions. The main difference be-
tween them is the number of stages, which have to be de-
creased for lower levels of the pyramid. As such we use 5,
4, 3, and 2 stages for the resolutions 512×256, 256 × 128,
128× 64, and 64× 32, respectively. Similarly, we decrease
the kernel sizes of the convolutions and use kernel sizes of
7, 5, 5, and 3 for the mentioned resolutions. Note that we
keep the same feature dimension of 8 × 4 × 128 for all the
levels’ latent codes.

The first level provides the base for the prediction which
is a low-resolution UV image and all subsequent layers are
added on top of this as offsets. To achieve this, the first level
receives the low-resolution ground truth as input, while later
layers receive the offset between the ground truth and the
previous level’s output along the conditioning inputs. The
output’s resolution matches that of the input. In order to be
able to add the offsets from the next level, this output needs
to be upscaled. For this, we use a custom model to upscale

1



Figure 1. We show the pyramid sampling at each level, one level
per row. The first element of each row is the base for the next row.

the UV images (see sec. 1.4). Repeating this at each level,
we double the resolution after each level until we reach the
final 512× 256 resolution.

1.4. Upscaling model

As we mentioned in the main paper we design an up-
scaling model to deal with the values on the garment mask
boundaries within the pyramid network. This model con-
tains a network of 5 convolutional layers with relu activa-
tion, batch normalization, and 256, 128, 64, 32, and 3 fea-
ture sizes, respectively, and the kernel size follows the cor-
responding pyramid-level kernel size. The last convolution
has a tanh activation instead of relu to predict the 3D coor-
dinates. The upscaling procedure is as follows. First, the
image is passed to the above network. This outputs an im-
age that is multiplied with the background mask (inverse of
the garment mask) and added to the input image. Finally,
we resize this combined image using bilinear interpolation.

2. Training
Due to the number of modules to be trained, we first

apply incremental training in which each sub-module is
trained independently. Later we will try end-to-end training
of the levels (conditioning encoders are still frozen). Next,
we will present these sub-modules individually.

2.1. Conditiong autoencoders

The initial set of modules encodes the conditional inputs
of the pipeline (as explained in sec. 1.2). We train these net-
works once on the highest resolution. We use Multiscale-
SSIM [2] loss for the autoencoders, and add an extra KL

Figure 2. We show the sampling process when changing only one
condition. In each case, the stated condition is changing, and the
other two and the latent code are fixed. For each case we have two
examples as the two rows.

loss (using a β-VAE strategy) when training VAEnorm. Fi-
nally, we optimize the networks with a batch size of 4 and



Figure 3. Generalization capability of our pyramid network on
CLOTH3D dataset as a function of the amount of training data
used.

Adam optimizer with a learning rate 10−4.
After the training, we are able to achieve a reconstruction

error of 1.1mm with the posed body and 9.3mm with the
template garment autoencoders. Note that the available data
for the template garments is only 1.6 thousand outfits which
are further split into training and validation data. As for the
VAEnorm, we achieve an MS-SSIM value of 0.993 with an
L1 error of 0.04.

2.2. Pyramid

In the pyramid pipeline, each level is trained individu-
ally in the incremental approach and together in the end-
to-end approach. The advantages of both cases are detailed
in the main paper Sec. 3.1.1. During training, each level
receives the same conditional features generated from the
high-resolution conditional input, thereby avoiding the need
to train three encoders per level and generate separate con-
ditions for each level. This has significant speed improve-
ments. For the variational encoders, each condition and the
unposed garment are downscaled to the given resolution.
The decoder outputs an image at the same resolution which
is upscaled to be added to the next level’s output.

The losses used are described in detail in the main paper.
Note that we only start using the normal loss after 2000
iterations, since otherwise, it makes the initial steps of the
training highly unstable.

We optimize the network with a batch size of 4 and
Adam optimizer with a learning rate 10−4.

3. Template UV coordinates
A template UV map is obtained by projecting a three-

dimensional body mesh to a fixed two-dimensional shape.
To construct this mapping, we start by annotating the body
mesh vertices according to the front and back of the body.
This is followed by defining some keypoints: 1) around
the ends of legs and arms, 2) around the neck, and 3) bi-
laterally for knees, hips, and underarms. We also create
a low-resolution 2D mesh as a template for the UV map.
We define pairs of previously selected key points and corre-
sponding points on the UV map template. Using these con-

trol points we apply thin plate spline interpolation (TPS) to
morph the 3D vertices to the 2D template (a 3D flat surface)
once for the front and then for the back vertices. The ver-
tices along the border between the front and back belong to
both parts, so they have to be duplicated. During the 3D
reconstruction, these duplicated pixels will be averaged to
obtain the 3D coordinate.

To further improve the construction of UV maps, we de-
fine more keypoints automatically. We take the vertices of
the previously mentioned border and find the closest vertex
on the 2D template. This vertex is obtained by calculat-
ing distances between the points and also from their nor-
mal vectors, the latter ensuring that the mesh is stretched
outwards from the center to the template. With these new
keypoint pairs, we apply TPS again. Finally, we obtain UV
mapping that maximizes the data representation by cover-
ing a large portion of the given rectangular grid (as shown
in Fig. 2(b) in the main paper).

4. Results
4.1. Pyramid sampling

We demonstrate how the sampling process works in the
pyramid architecture. Given a set of conditioning variables,
which are the template garment, posed body, and normal
maps, we sample the VAE latent space, concatenate the en-
coded conditions, and pass it to the decoder. When we do
this at the first pyramid level, we get some potential base
garments as seen in Fig. 1. After this, we sample from
the second level and generate the offsets over the first level,
which adds some smaller details. The contribution of each
level can be seen in the figure. In the case shown, after the
second level, the changes are minimal. To further demon-
strate the sampling possibilities, we show examples of only
one of the conditions changing to better demonstrate how it
works. This can be seen in Fig. 2.

4.2. Normal map sampling

The aim of the normals is to provide guidance and
variability for the generation of samples. We study the
VAEnorm model’s ability to generate normal maps. We can
see some examples in Fig. 4 which show how we can gen-
erate multiple plausible normal maps for a given input.

4.3. Generalization

To show the generalization and representation capacity
of our model we evaluate how the error scales when using
a smaller portion of the training data. We run the training
with the following portions of the data: 0.5, 0.25, and 0.12.
As seen in the error trend in Fig. 3, we can achieve state-of-
the-art with only 10 percent of the data. It also shows we

2Note these portions are not applied on the whole CLOTH3D dataset
but the 20% we initially selected in this paper.



Figure 4. Examples of sampling normal maps. The left (i) is the
original, and the four on the right (ii-v) are randomly sampled from
the VAEnorm model. We can see high variance while they still
represent realistic deformations.

can scale the method by increasing the amount of data, but
the improvements will diminish soon.

4.4. Additional example results

We provide some additional qualitative examples from
the CLOTH3D dataset in Fig. 5 and Fig. 6. Our model is
able to reconstruct a high level of detail on a variety of dif-
ferent garments. We also show some additional comparison
with HOOD in Fig. 7.

References
[1] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-

enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,
2022. 1

[2] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale struc-
tural similarity for image quality assessment. In The Thrity-
Seventh Asilomar Conference on Signals, Systems & Comput-
ers, 2003, volume 2, pages 1398–1402 Vol.2, 2003. 2



Figure 5. Additional qualitative examples from the CLOTH3D dataset: ground truth and proposed model’s reconstruction.



Figure 6. Additional qualitative examples from the CLOTH3D dataset: ground truth and proposed model’s reconstruction.



Figure 7. Additional qualitative comparison examples with HOOD, where we can see the ground truth, HOOD prediction, and ours.


	. ArchitectureWe commit to releasing the code upon the paper's acceptance.
	. Baseline
	. Conditioning autoencoders
	. Pyramid
	. Upscaling model

	. Training
	. Conditiong autoencoders
	. Pyramid

	. Template UV coordinates
	. Results
	. Pyramid sampling
	. Normal map sampling
	. Generalization
	. Additional example results


