Appendix

Charles Laroche GoPro \& MAP5

charles.laroche@u-paris.fr

Andrés Almansa
CNRS \& Université Paris Cité
andres.almansa@parisdescartes.fr

Eva Coupete
GoPro
ecoupete@gopro.com

Abstract

This document provides additional details for the article Fast Diffusion EM: a diffusion model for blind inverse problems with application to deconvolution.

A. Iterative Diffusion EM algorithm

Algorithm A. 1 summarizes the Diffusion EM algorithm described in sections 3.1 and 3.2.

```
Algorithm A. 1 Diffusion EM algorithm
Require: \(y, \sigma, H_{0}, L\),
Ensure: \(H \approx \arg \min _{H} p(y \mid H)\) and \(x_{0}^{i} \sim p\left(x_{0} \mid y, H\right)\)
    for \(l=1\) to \(L\) do
        \(\boldsymbol{x}=\operatorname{E-step}\left(y, H_{l-1}, \sigma\right) \quad \triangleright n\) samples from Alg. 1
        \(H_{l}=M-\operatorname{step}(y, \boldsymbol{x}, \sigma) \quad \triangleright\) Iterate (24) and (25)
    end for
    return \(x, H_{L}\)
```


B. M-step computations

In this section, we derive the computation of the M-step. In particular, we solve Equation (22) from the main paper:

$$
\begin{equation*}
Z^{*}=\arg \min _{Z \in \mathcal{C}} \frac{1}{2 \sigma^{2} n} \sum_{i=1}^{n}\left\|Z x^{i}-y\right\|_{2}^{2}+\frac{\beta}{2}\|Z-H\|_{2}^{2} \tag{B.1}
\end{equation*}
$$

with \mathcal{C} the space of convolution operators.
In order to account for the fact that $H \in \mathcal{C}$ and $Z_{t} \in \mathcal{C}$ are convolution operators, we rewrite the same equation in the Fourier domain, where the operators H and Z become diagonal:

$$
\begin{align*}
\mathcal{F}(H) & =\operatorname{diag}(h(1), \ldots, h(d)) \tag{B.2}\\
\mathcal{F}(Z) & =\operatorname{diag}(z(1), \ldots, z(d)) \tag{B.3}
\end{align*}
$$

Re-writing the minimization in the Fourier domain leads to:

$$
\begin{align*}
\mathcal{F}\left(Z^{*}\right) & =\arg \min _{Z \in \mathcal{C}} \frac{1}{2 \sigma^{2} n} \sum_{i=1}^{n}\left\|\mathcal{F}(Z) \mathcal{F}\left(x^{i}\right)-\mathcal{F}(y)\right\|_{2}^{2}+\frac{\beta}{2}\|\mathcal{F}(Z)-\mathcal{F}(H)\|_{2}^{2} \tag{B.4}\\
& =\arg \min _{z} \frac{1}{2 \sigma^{2} n} \sum_{i=1}^{n} \sum_{j=1}^{d}\left|z(j) \mathcal{F}\left(x^{i}\right)(j)-\mathcal{F}(y)(j)\right|^{2}+\frac{\beta}{2} \sum_{j=1}^{d}|z(j)-h(j)|^{2} \tag{B.5}
\end{align*}
$$

It is straightforward that the solution to the problem is also diagonal, thus we have:

$$
\begin{equation*}
\mathcal{F}\left(Z^{*}\right)=\operatorname{diag}\left(z^{*}(1), \ldots, z^{*}(d)\right) \tag{B.6}
\end{equation*}
$$

Using the first-order condition and the diagonal structure of the problem, we get the following:

$$
\begin{align*}
& \frac{1}{\sigma^{2} n} \sum_{i=1}^{n}\left[z^{*}(j) \mathcal{F}\left(x^{i}\right)(j)-\mathcal{F}(y)(j)\right] \overline{\mathcal{F}\left(x^{i}\right)(j)}+\beta\left(z^{*}(j)-k(j)\right)=0 \tag{B.7}\\
\Leftrightarrow & z^{*}(j)\left(\frac{1}{n} \sum_{i=1}^{n}\left|\mathcal{F}\left(x^{i}\right)(j)\right|^{2}+\sigma^{2} \beta\right)=\mathcal{F}(y)(j) \frac{1}{n} \sum_{i=1}^{n} \overline{\mathcal{F}\left(x^{i}\right)(j)}+\sigma^{2} \beta k(j) \tag{B.8}\\
\Leftrightarrow & z^{*}(j)=\frac{\mathcal{F}(y)(j) \frac{1}{n} \sum_{i=1}^{n} \overline{\mathcal{F}\left(x^{i}\right)(j)}+\sigma^{2} \beta k(j)}{\frac{1}{n} \sum_{i=1}^{n}\left|\mathcal{F}\left(x^{i}\right)(j)\right|^{2}+\sigma^{2} \beta} . \tag{B.9}
\end{align*}
$$

C. M-step computations with DPS approximation

In this section, we develop the computation of the M-step in Fast EM for DPS. We start from Equation (32) of the main paper:

$$
\begin{equation*}
\left.\widehat{Q}\left(Z, Z_{t}\right)=\frac{-1}{2 \sigma^{2} n} \sum_{i=1}^{n}\left\|Z \widehat{x}_{0}^{i}(t)-y\right\|_{2}^{2}\right] \tag{C.1}
\end{equation*}
$$

Our goal is to compute:

$$
\begin{equation*}
Z^{*}=\arg \min _{Z \in \mathcal{C}}-\widehat{Q}\left(Z, Z_{t}\right)+(\beta / 2)\|Z-H\|_{2}^{2} \tag{C.2}
\end{equation*}
$$

We can notice that it is similar to Equation (B.4) with $\widehat{x}_{0}^{i}(t)$ instead of x^{i}. Thus we have that:

$$
\begin{equation*}
z^{*}(j)=\frac{\mathcal{F}(y)(j) \frac{1}{n} \sum_{i=1}^{n} \overline{\mathcal{F}\left(\widehat{x}_{0}^{i}(t)\right)(j)}+\sigma^{2} \beta h(j)}{\frac{1}{n} \sum_{i=1}^{n}\left|\mathcal{F}\left(\widehat{x}_{0}^{i}(t)\right)(j)\right|^{2}+\sigma^{2} \beta} \tag{C.3}
\end{equation*}
$$

D. M-step computations with ПGDM approximations

In this section, we develop the computation of the M-step in Fast EM for ПGDM. We start from Equation (33) of the main paper:

$$
\begin{equation*}
\widehat{Q}\left(H, H_{t}\right)=\frac{-1}{2 \sigma^{2} n} \sum_{i=1}^{n} E_{x \sim \mathcal{N}\left(\widehat{x}_{0}^{i}(t), r_{t}^{2}\right)}\left[\|H x-y\|_{2}^{2}\right] \tag{D.1}
\end{equation*}
$$

Our goal is to compute:

$$
\begin{equation*}
Z^{*}=\arg \min _{Z \in \mathcal{C}}-\widehat{Q}\left(Z, Z_{t}\right)+(\beta / 2)\|Z-H\|_{2}^{2} \tag{D.2}
\end{equation*}
$$

Similarly to Section B, we work with diagonal operators so we have:

$$
\begin{align*}
\mathcal{F}(H) & =\operatorname{diag}(h(1), \ldots, h(d)) \tag{D.3}\\
\mathcal{F}(Z) & =\operatorname{diag}(z(1), \ldots, z(d)) \tag{D.4}
\end{align*}
$$

and thus:

$$
\begin{equation*}
\mathcal{F}\left(Z^{*}\right)=\operatorname{diag}\left(z^{*}(1), \ldots, z^{*}(d)\right) \tag{D.5}
\end{equation*}
$$

We start by rewriting Equation D. 1 in the Fourier domain using the fact that the Fourier transform preserves norms:

$$
\begin{equation*}
\mathcal{F}\left(Z^{*}\right)=\arg \min _{z} \frac{1}{2 \sigma^{2} n} \sum_{i=1}^{n} \sum_{j=1}^{d} E_{x \sim \mathcal{N}\left(\widehat{x}_{0}^{i}(t), r_{t}^{2}\right)}\left[|z(j) \mathcal{F}(x)(j)-\mathcal{F}(y)(j)|^{2}\right]+(\beta / 2) \sum_{j=1}^{d}|z(j)-h(j)|^{2} . \tag{D.6}
\end{equation*}
$$

We solve this problem using the first-order condition element by element since the problem is diagonal, the derivation inside the expectancy can be done using Fisher identity [1, Proposition D.4]:

$$
\begin{align*}
& \frac{1}{\sigma^{2} n} \sum_{i=1}^{n} E_{x \sim \mathcal{N}\left(\widehat{x}_{0}^{i}(t), r_{t}^{2}\right)}[|z(j) \mathcal{F}(x)(j)-\mathcal{F}(y)(j)| \overline{\mathcal{F}(x)(j)}]+\beta(z(j)-h(j))=0 \tag{D.7}\\
\Leftrightarrow & z(j)\left[\frac{1}{n} \sum_{i=1}^{n} E_{x \sim \mathcal{N}\left(\widehat{x}_{0}^{i}(t), r_{t}^{2}\right)}\left[|\mathcal{F}(x)(j)|^{2}\right]+\sigma^{2} \beta\right]=\mathcal{F}(y)(j) \frac{1}{n} \sum_{i=1}^{n} E_{x \sim \mathcal{N}\left(\widehat{x}_{0}^{i}(t), r_{t}^{2}\right)}[\overline{\mathcal{F}(x)(j)}]+\sigma^{2} \beta h(j) \tag{D.8}
\end{align*}
$$

Using the fact that the Fourier transform of a white Gaussian noise of variance σ^{2} is a white Gaussian noise of variance σ^{2}, the expected values yield:

$$
\begin{gathered}
E_{x \sim \mathcal{N}\left(\widehat{x}_{0}, r_{t}^{2}\right)}\left[|\mathcal{F}(x)(j)|^{2}\right]=r_{t}^{2}+\left|\mathcal{F}\left(\widehat{x}_{0}\right)(j)\right|^{2} \\
E_{x \sim \mathcal{N}\left(\widehat{x}_{0}, r_{t}^{2}\right)}\left[\overline{\mathcal{F}(x)(j)]}=\overline{\mathcal{F}\left(\widehat{x}_{0}\right)(j)}\right.
\end{gathered}
$$

So we can conclude that:

$$
\begin{equation*}
z^{*}(j)=\frac{\mathcal{F}(y)(j) \frac{1}{n} \sum_{i=1}^{n} \overline{\mathcal{F}\left(\widehat{x}_{0}^{i}(t)\right)(j)}+\sigma^{2} \beta h(j)}{\frac{1}{n} \sum_{i=1}^{n}\left|\mathcal{F}\left(\widehat{x}_{0}^{i}(t)\right)(j)\right|^{2}+r_{t}^{2}+\sigma^{2} \beta} \tag{D.9}
\end{equation*}
$$

The main difference with DPS approximation is that we have an extra term in the denominator r_{t}^{2}.

E. Additional results

See Figure E.1.

References

[1] Randal Douc, Eric Moulines, and David Stoffer. Nonlinear Time Series. Chapman and Hall/CRC, jan 2014. 3

Figure E.1. Visual comparison of the different models on a degraded version of FFHQ 256x256 dataset. Ours correspond to Fast EM.

