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Abstract

This document provides additional details for the article Fast Diffusion EM: a diffusion model for blind inverse problems
with application to deconvolution.

A. Iterative Diffusion EM algorithm
Algorithm A.1 summarizes the Diffusion EM algorithm described in sections 3.1 and 3.2.

Algorithm A.1 Diffusion EM algorithm

Require: y, σ,H0, L,
Ensure: H ≈ argminH p(y|H) and xi

0 ∼ p(x0|y,H)
for l = 1 to L do

x = E-step(y,Hl−1, σ) ▷ n samples from Alg. 1
Hl = M-step(y,x, σ) ▷ Iterate (24) and (25)

end for
return x, HL

B. M-step computations
In this section, we derive the computation of the M-step. In particular, we solve Equation (22) from the main paper:

Z∗ = argmin
Z∈C

1

2σ2n

n∑
i=1

∥Zxi − y∥22 +
β

2
∥Z −H∥22. (B.1)

with C the space of convolution operators.
In order to account for the fact that H ∈ C and Zt ∈ C are convolution operators, we rewrite the same equation in the Fourier
domain, where the operators H and Z become diagonal:

F(H) = diag(h(1), . . . , h(d)), (B.2)

F(Z) = diag(z(1), . . . , z(d)). (B.3)

Re-writing the minimization in the Fourier domain leads to:

F(Z∗) = argmin
Z∈C

1

2σ2n

n∑
i=1

∥F(Z)F(xi)−F(y)∥22 +
β

2
∥F(Z)−F(H)∥22 (B.4)

= argmin
z

1

2σ2n

n∑
i=1

d∑
j=1

|z(j)F(xi)(j)−F(y)(j)|2 + β

2

d∑
j=1

|z(j)− h(j)|2. (B.5)



It is straightforward that the solution to the problem is also diagonal, thus we have:

F(Z∗) = diag(z∗(1), . . . , z∗(d)). (B.6)

Using the first-order condition and the diagonal structure of the problem, we get the following:

1

σ2n

n∑
i=1

[
z∗(j)F(xi)(j)−F(y)(j)

]
F(xi)(j) + β(z∗(j)− k(j)) = 0 (B.7)

⇔z∗(j)

(
1

n

n∑
i=1

|F(xi)(j)|2 + σ2β

)
= F(y)(j)

1

n

n∑
i=1

F(xi)(j) + σ2βk(j) (B.8)

⇔z∗(j) =
F(y)(j) 1n

∑n
i=1 F(xi)(j) + σ2βk(j)

1
n

∑n
i=1 |F(xi)(j)|2 + σ2β

. (B.9)

C. M-step computations with DPS approximation
In this section, we develop the computation of the M-step in Fast EM for DPS. We start from Equation (32) of the main

paper:

Q̂(Z,Zt) =
−1

2σ2n

n∑
i=1

∥Zx̂i
0(t)− y∥22]. (C.1)

Our goal is to compute:

Z∗ = argmin
Z∈C

−Q̂(Z,Zt) + (β/2)∥Z −H∥22. (C.2)

We can notice that it is similar to Equation (B.4) with x̂i
0(t) instead of xi. Thus we have that:

z∗(j) =
F(y)(j) 1n

∑n
i=1 F(x̂i

0(t))(j) + σ2βh(j)
1
n

∑n
i=1 |F(x̂i

0(t))(j)|2 + σ2β
. (C.3)

D. M-step computations with ΠGDM approximations
In this section, we develop the computation of the M-step in Fast EM for ΠGDM. We start from Equation (33) of the main

paper:

Q̂(H,Ht) =
−1

2σ2n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[∥Hx− y∥22]. (D.1)

Our goal is to compute:

Z∗ = argmin
Z∈C

−Q̂(Z,Zt) + (β/2)∥Z −H∥22. (D.2)

Similarly to Section B, we work with diagonal operators so we have:

F(H) = diag(h(1), . . . , h(d)) (D.3)

F(Z) = diag(z(1), . . . , z(d)). (D.4)

and thus:
F(Z∗) = diag(z∗(1), . . . , z∗(d)). (D.5)

We start by rewriting Equation D.1 in the Fourier domain using the fact that the Fourier transform preserves norms:

F(Z∗) = argmin
z

1

2σ2n

n∑
i=1

d∑
j=1

Ex∼N (x̂i
0(t),r

2
t )
[|z(j)F(x)(j)−F(y)(j)|2] + (β/2)

d∑
j=1

|z(j)− h(j)|2. (D.6)



We solve this problem using the first-order condition element by element since the problem is diagonal, the derivation inside
the expectancy can be done using Fisher identity [1, Proposition D.4]:

1

σ2n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[|z(j)F(x)(j)−F(y)(j)|F(x)(j)] + β(z(j)− h(j)) = 0 (D.7)

⇔z(j)

[
1

n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[|F(x)(j)|2] + σ2β

]
= F(y)(j)

1

n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[F(x)(j)] + σ2βh(j) (D.8)

Using the fact that the Fourier transform of a white Gaussian noise of variance σ2 is a white Gaussian noise of variance σ2,
the expected values yield:

Ex∼N (x̂0,r2t )
[|F(x)(j)|2] = r2t + |F(x̂0)(j)|2

Ex∼N (x̂0,r2t )
[F(x)(j)] = F(x̂0)(j)

So we can conclude that:

z∗(j) =
F(y)(j) 1n

∑n
i=1 F(x̂i

0(t))(j) + σ2βh(j)
1
n

∑n
i=1 |F(x̂i

0(t))(j)|2 + r2t + σ2β
(D.9)

The main difference with DPS approximation is that we have an extra term in the denominator r2t .

E. Additional results
See Figure E.1.
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Figure E.1. Visual comparison of the different models on a degraded version of FFHQ 256x256 dataset. Ours correspond to Fast EM.


