HELA-VFA: A Hellinger Distance-Attention-based Feature Aggregation Network for Few-Shot Classification

Gao Yu Lee, Tanmoy Dam, Daniel Puiu Poenar, Vu N. Duong
Nanyang Technological University (NTU), Singapore
\{GAOYUOO1, tanmoy.dam, EPDPuiu, vu.duong\}@ntu.edu.sg

Md Meftahul Ferdaus
University of New Orleans, USA
ferdaus57@gmail.com

In this supplementary material a mathematical derivation of equation (7) in the main paper, "HELA-VFA: A Hellinger Distance-Attention-based Feature Aggregation Network for Few Shot Classification" is provided, which relates the Evidence Lower Bound (ELBO) with the evidence term $\int \log \left(p_{\theta}(\mathcal{T})\right) d z$ and the Hellinger distance D_{H}.

1. Mathematical Derivation

Recall in the paper that the ELBO can be written as

$$
\begin{equation*}
E L B O=\int q_{\phi}(z \mid \mathcal{S}) \log \left(\frac{p_{\theta}(\mathcal{T}, z)}{q_{\phi}(z \mid \mathcal{S})}\right) d z \tag{1}
\end{equation*}
$$

and that the square of D_{H} is written as

$$
\begin{equation*}
D_{H}^{2}=1-\int\left(\sqrt{p_{\theta}(z \mid \mathcal{T}) q_{\phi}(z \mid \mathcal{S})}\right) d z \tag{2}
\end{equation*}
$$

Exchanging the positions of the terms on both sides and taking the logarithm of the terms,

$$
\begin{equation*}
\log \int\left(\sqrt{p_{\theta}(z \mid \mathcal{T}) q_{\phi}(z \mid \mathcal{S})}\right) d z=\log \left(1-D_{H}^{2}\right) \tag{3}
\end{equation*}
$$

Inserting the logarithm inside the integral on the lefthand side while bringing out the factor of $\frac{1}{2}$ and moving it to the term on the right-hand side,

$$
\begin{equation*}
\int \log \left(p_{\theta}(z \mid \mathcal{T}) q_{\phi}(z \mid \mathcal{S})\right) d z=2 \log \left(1-D_{H}^{2}\right) \tag{4}
\end{equation*}
$$

Noting that $\log \left(p_{\theta}(z \mid \mathcal{T}) q_{\phi}(z \mid \mathcal{S})\right)=\log \left(p_{\theta}(z \mid \mathcal{T})\right)+$ $\log \left(q_{\phi}(z \mid \mathcal{S})\right)$, the left-hand side becomes
$\int \log \left(p_{\theta}(z \mid \mathcal{T})\right) d z+\int \log \left(q_{\phi}(z \mid \mathcal{S})\right) d z=2 \log \left(1-D_{H}^{2}\right)$.

Inserting the positive and negative of the evidence term on the left-hand side:

$$
\begin{align*}
\int \log \left(p_{\theta}(z \mid \mathcal{T})\right) d z+ & \left.\int \log \left(q_{\phi}(z \mid \mathcal{S})\right)\right) d z \\
+\int \log \left(p_{\theta}(\mathcal{T})\right) d z & -\int \log \left(p_{\theta}(\mathcal{T})\right) d z \tag{6}\\
& =2 \log \left(1-D_{H}^{2}\right)
\end{align*}
$$

the following is obtained,

$$
\begin{array}{r}
\int \log \left(p_{\theta}(z, \mathcal{T})\right) d z+\int \log \left(\frac{q_{\phi}(z \mid \mathcal{S})}{p_{\theta}(\mathcal{T})}\right) d z \tag{7}\\
=2 \log \left(1-D_{H}^{2}\right)
\end{array}
$$

where $p_{\theta}(z, \mathcal{T})=p_{\theta}(z \mid \mathcal{T}) p_{\theta}(\mathcal{T})$. Inserting $\frac{q_{\phi}(z \mid \mathcal{S})}{q_{\phi}(z \mid \mathcal{S})}$ in the parenthesis of $\log \left(p_{\theta}(z, \mathcal{T})\right)$ and expanding the logarithm,

$$
\begin{array}{r}
\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z+\int \log \left(\frac{q_{\phi}^{2}(z \mid \mathcal{S})}{p_{\theta}(\mathcal{T})}\right) d z \tag{8}\\
=2 \log \left(1-D_{H}^{2}\right)
\end{array}
$$

where the second term on the left can be expanded out to obtain

$$
\begin{array}{r}
\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z+2 \int \log \left(q_{\phi}(z \mid \mathcal{S})\right) d z \tag{9}\\
\quad-\int \log \left(p_{\theta}(\mathcal{T})\right) d z=2 \log \left(1-D_{H}^{2}\right)
\end{array}
$$

Inserting the fraction $\frac{p_{\theta}(z, \mathcal{T})}{p_{\theta}(z, \mathcal{T})}$ in the parenthesis of $\log \left(q_{\phi}(z \mid \mathcal{S})\right)$, the term $2 \int \log \left(q_{\phi}(z \mid \mathcal{S})\right) d z$ can be written as

$$
\begin{align*}
2 \int \log \left(q_{\phi}(z \mid \mathcal{S})\right) d z & =2 \int \log \left(p_{\theta}(z, \mathcal{T})\right) d z \tag{10}\\
& +2 \int \log \left(\frac{q_{\phi}(z \mid \mathcal{S})}{p_{\theta}(z, \mathcal{T})}\right)
\end{align*}
$$

in which the second term on the right is the inverse, and consequently, the negative of the twice of the integral of the ELBO logarithmic term, i.e., $-2 \int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z$. Therefore

$$
\begin{array}{r}
\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z-2 \int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) \\
+2 \int \log \left(p_{\theta}(z, \mathcal{T})\right) d z-\int \log \left(p_{\theta}(\mathcal{T})\right) d z \tag{11}\\
=2 \log \left(1-D_{H}^{2}\right)
\end{array}
$$

$p_{\theta}(z, \mathcal{T})=p_{\theta}(z \mid \mathcal{T}) p_{\theta}(\mathcal{T})$ is utilized again, this time on the $\log \left(p_{\theta}(z, \mathcal{T})\right)$ term, to obtain

$$
\begin{gather*}
-\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z+2 \int \log \left(p_{\theta}(z \mid \mathcal{T}) p_{\theta}(\mathcal{T})\right) d z \\
-\int \log \left(p_{\theta}(\mathcal{T})\right) d z=2 \log \left(1-D_{H}^{2}\right) \tag{12}
\end{gather*}
$$

in which the second term can be expanded out to obtain

$$
\begin{array}{r}
-\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z+2 \int \log \left(p_{\theta}(z \mid \mathcal{T})\right) d z \\
+2 \int \log \left(p_{\theta}(\mathcal{T})\right) d z-\int \log \left(p_{\theta}(\mathcal{T})\right) d z=2 \log \left(1-D_{H}^{2}\right) \tag{13}
\end{array}
$$

Now, using the fact that $p_{\theta}(z \mid \mathcal{T})=\frac{p_{\theta}(z, \mathcal{T})}{p_{\theta}(\mathcal{T})}$, the $\log \left(p_{\theta}(z \mid \mathcal{T})\right)$ term can be written as $\log \left(\frac{p_{\theta}(z, \mathcal{T})}{p_{\theta}(\mathcal{T})}\right)$, which then along with the other terms, can be expressed as

$$
\begin{array}{r}
-\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z+2 \int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{p_{\theta}(\mathcal{T})}\right) d z \\
+\int \log \left(p_{\theta}(\mathcal{T})\right) d z=2 \log \left(1-D_{H}^{2}\right) \\
-\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z+2 \int \log \left(p_{\theta}(z, \mathcal{T})\right) d z \tag{15}\\
-\int \log \left(p_{\theta}(\mathcal{T})\right) d z=2 \log \left(1-D_{H}^{2}\right)
\end{array}
$$

$$
\begin{equation*}
-\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z+2 \int \log \left(p_{\theta}(z, \mathcal{T})\right) d z= \tag{16}
\end{equation*}
$$

$$
\int \log \left(p_{\theta}(\mathcal{T})\right) d z+2 \log \left(1-D_{H}^{2}\right)
$$

Finally, noting the observation that $\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z$ can be rewritten in terms of ELBO and $q_{\phi}(z \mid \mathcal{S})$ as

$$
\begin{array}{r}
\int \log \left(\frac{p_{\theta}(z, \mathcal{T})}{q_{\phi}(z \mid \mathcal{S})}\right) d z=\int\left(\frac{1}{q_{\phi}(z \mid \mathcal{S})} \frac{d(E L B O)}{d z}\right) d z \\
=\frac{1}{q_{\phi}(z \mid \mathcal{S})} E L B O \tag{17}
\end{array}
$$

the following is derived:

$$
\begin{equation*}
E L B O^{\prime}=\int \log \left(p_{\theta}(\mathcal{T})\right) d z+\log \left(1-D_{H}^{2}\right)^{2} \tag{18}
\end{equation*}
$$

where $E L B O^{\prime}=\frac{E L B O}{q_{\phi}(z \mid \mathcal{S})}$.

