
A. Background: Kernel Mismatch

In real-world settings, the degradation process can often

be complex, involving multiple stages of blurring, down-

sampling and noise addition. For cases in which this process

is not known, super-resolution models are required to be ro-

bust to unknown degradations, i.e. they need to be able to

upsample any natural image in the wild. To this end, Efrat et

al.[9] first shed light on the kernel mismatch phenomenon:

how the super-resolved image would be impacted if the es-

timated kernel differs from the ground-truth kernel, which

is assumed to be Gaussian, regardless of the given prior.

Specifically, their study demonstrated that a smoother ker-

nel relative to its corresponding ground-truth kernel leads

to sharper images while a sharper kernel leads to blurry im-

ages. Hence, accurately estimating the ground-truth kernel

is crucial in order for the downstream non-blind SR model

to produce visually pleasing super-resolved images.

B. MetaKernelGAN Details

Models. For our generator, we employ a deep linear archi-

tecture with six convolutional layers and without non-linear

activations. The layers have kernel sizes of [7, 3, 3, 1, 1, 1],
a stride of 2 for the last layer and 1 for the earlier layers,

representing the linear operation of applying a blur kernel

of size 11× 11 followed by the subsampling operation. For

our discriminator, we adopt KernelGAN’s architecture: a

7-layer discriminator with kernel sizes of [7, 1, 1, 1, 1, 1, 1],
each followed by a Spectral normalization [27], batch nor-

malization [15], and ReLU activation, except for the last

layer which consists of a sigmoid activation at the end.
Weighting the Interval Loss Optimization Steps. Follow-
ing MZSR [32], we weight each interval loss optimization
step equally at the beginning, then slowly decaying the pre-
ceding adaptation steps and converging the weight to the
last adaptation step:

w← GetIntervalLossWeights(j) where

w[0], · · · ,w[Nval − 2]] =

min(
1

Nval

− j ·
3

Nval · 10000
,
0.03

Nval

)

w[Nval − 1] = 1−

Nval−2∑

m=0

wm

where j ∈ [1, Nsteps] is the meta-objective step and Nval is

the total number of interval loss evaluation for each task, as

used in Alg. 1.

Inference Algorithm. To adapt the meta-learned GAN on

a new LR image (Alg. 2), we initialize G and D with the

meta-learned base parameters, θ̂G and θ̂D (lines 1-2). We

then adapt these parameters using our task adaptation loss

as per Eq. (5) for Nadapt steps (line 3) and the estimated

kernel is derived from MetaKernelGAN’s generator as per

Eq. (3) (line 5).

Algorithm 2: Inference of MetaKernelGAN

Input: Input image ILR

Number of steps Nadapt

Meta-learned θ̂G and θ̂D
Output: Kernel estimate k∗ for the given image

1 θG ← θ̂G, θD ← θ̂D ▷ Initialize G and D with meta-learned

parameters

2 for l in [1, Nadapt] do ▷ Adaptation steps over the given image ILR

3 Compute adapted parameters (Eq. (4)):

θG ← θG − αG∇θG
L

task
G

(θD, θG)

θD ← θD − αD∇θD
L

task
G

(θD, θG)

4 end

5 k̂ ← DK(θG) ▷ Derive kernel estimate

B.1. MetaKernelGAN Flow

θi
G θi

D

Ltask
G

Ltask
D

Update θi
G

(Line 9)

Update θi
D

(Line 9)

Lmeta
G Lmeta

Dk

Append to b[Ti][G]
(Line 11)

Append to b[Ti][D]
(Line 12)

For Nadapt 
steps

(Lines 6-15)

Update θG
(Line 17)

Update θD
(Line 17)

w
(Line 16)

Sample task Ti

(Line 4)

For Nsteps 
iterations

(Lines 2-18)

Every Nval steps
(Lines 10-13)

Figure 7. Flow chart of Algo. 1.

Fig. 7 shows the flow diagram of MetaKernelGAN meta-

training stage shown in Algo. 1, which is described in Sec-

tion. 3.1. Green & red lines represent updates to the gener-

ator the discriminator respectively, with dotted lines repre-

senting the task adaptation stage and solid lines represent-

ing the meta-optimization stage. The blue lines represent

the weighting of the meta-objectives.

B.2. MetaKernelGAN Task Design

The task-related component of our framework comprise:

i) the tasks T , and ii) the task probability distribution p(T )
that determines the strategy of sampling a task from the can-

didate tasks, i.e. T i ∼ p(T ).
Task T i. Each task T i =

〈

ILR,i, k
〉

consists of an LR

image and a blur kernel k. The LR image is formed in

three steps: i) an HR image, IHR,i, is first randomly sam-

pled from the given dataset; ii) random augmentation op-



erations, such as flipping or rotation, are applied on the

selected HR image; and, finally, iii) an LR image is ob-

tained by applying kernel k on the HR image. Key to

our task setup is that each task encapsulates both a sup-

port and a query set, by containing multiple patches with

the same blur kernel. We denote the support/query set

as Di
s ∪ Di

q = {(pLR, k)} ∃pLR∈patches(ILR,i), i.e. the

support (Di
s) and query (Di

q) sets consist of different patches

from the same LR image. With this formulation, the meta-

learning method can learn from multiple patches that have

been degraded with the same kernel, exploiting in this man-

ner the internal patch recurrence of the given image. The

complete set of tasks T is defined using a dataset of HR

images and a distribution of blur kernels.

Task Probability Distribution p(T ). The distribution

p(T ) controls our task sampling strategy and encompasses

both the blur kernel and the HR image selection. First, the

kernel k is chosen by uniformly sampling from a predefined

distribution, e.g. an anisotropic Gaussion distribution. Sim-

ilarly, the HR image is uniformly sampled from the given

training dataset. After the sampling process, the final task

is constructed by applying k to an augmented version of the

HR image to produce its LR counterpart, ILR,i.

Patch Sampling Strategy. To evaluate the LLSGAN term

used by both the task adaptation loss and the meta-objective

of our method, patches are sampled from a task’s LR im-

age. To sample an image patch, pLR,i, we follow a similar

strategy as KernelGAN: we assign a selection probability

to each patch in ILR,i based on its gradient magnitude. In

this manner, patches with higher gradient magnitude have

a higher probability to be selected. The rationale behind

this strategy is that using flat patches, i.e. with low gradient

magnitude, would aggravate the ill-posedness of the ker-

nel estimation problem, leading to a typical isotropic Gaus-

sian kernel [21]. Specifically, KernelGAN utilizes the gra-

dient magnitude of ILR,i and its bicubic upsampled super-

resolved image to determine each patch’s selection proba-

bility for the discriminator and generator respectively. Un-

like KernelGAN, we utilize the gradient magnitude of ILR,i

for the generator instead and take the top-left sub-patch for

the discriminator. This empirically results in a slight boost

in performance possibly because the discriminator can learn

to discriminate between two patches from the same region

in the image, as opposed to two randomly sampled regions

as implemented in KernelGAN.

C. Evaluation & Reproducibility Details

Hyperparameter Details. We use a task batch size of 1.

We divide αG by 10 after 50 & 200 adaptation steps dur-

ing inference. For αG and αD, we tried values [0.1, 0.2,

0.5, 0.01, 0.02, 0.05] and picked the ones with the highest

performance: αG = 0.01, αD = 0.2.

Implementation Details. MetaKernelGAN was built on

top of PyTorch v1.7 and learn2learn [3], an open-source

meta-learning framework which we extended to support

MetaKernelGAN’s components and algorithms. We further

integrated part of the code of FKP [22], MZSR [32], Ker-

nelGAN [5], and USRNet [39].

Baseline Details. Following KernelGAN-FKP, we replace

one autoencoder in Double-DIP with a fully-connected net-

work to model the kernel. All prior work results are re-

ported using the associated codebases4.

Subpixel Alignments & Kernel Shifts. We shift the eval-

uation set of LR images by shifting its blur kernel fol-

lowing [39] when evaluating all explicit kernel estimation

approaches, including MetaKernelGAN. However, the as-

sumed center of mass of the kernel is slightly different in

previous implicit degradation estimation works. Hence, to

avoid subpixel misalignments in these cases, we regenerate

the evaluation set of LR images by shifting its kernel fol-

lowing [5] when evaluating IKC, DAN, and DASR.

Difference in Performance for DIP-FKP. The original

FKP work uses a different kernel distribution to evalu-

ate DIP-FKP and KernelGAN-FKP. For fair comparison,

we use the same distribution when evaluating all previous

explicit kernel estimation works. Specifically, we adopt

the kernel distribution originally proposed for KernelGAN-

FKP.

Covariance of Estimated Kernel. We derive the dis-

cretized kernel k̂ from Eq. (2) as an m×m matrix and calcu-

late the covariance matrix as Σ̂ =
[

a c

c b

]

where a= Var(col
k̂
),

b = Var(rows
k̂
) and c = Covar(col

k̂
, rows

k̂
).

D. Ablation

Meta-learning the Generator. Fig. 8 shows the case where

we only meta-learn the generator and not the discriminator.

As the discriminator is trained from scratch for each image

during evaluation, the meta-trained generator dominates the

training, leading to inadequate generator feedback from the

discriminator and in turn to inferior kernel accuracy.

Number of Iteration Steps. We meta-trained MetaKernel-

GAN with Nadapt=10, 25, 50 and showed the Kernel PSNR

and LK-COV for ×2 upsampling in Table. R1. We observe

that the kernel has not converged when Nadapt=10, resulting

in worse kernel performance. Nadapt=50 also leads to worse

performance, possibly attributed to the first-order approxi-

mation of FOMAML which is not suited for long inner-loop

trajectories.

4https://github.com/JingyunLiang/FKP/

https://github.com/greatlog/DAN

https://github.com/yuanjunchai/IKC

https://github.com/ShuhangGu/DASR

https://github.com/zsyOAOA/BSRDM

https://github.com/JingyunLiang/FKP/
https://github.com/greatlog/DAN
https://github.com/yuanjunchai/IKC
https://github.com/ShuhangGu/DASR
https://github.com/zsyOAOA/BSRDM


0 250 500 750 1000

Steps

40

45

50

K
er
ne
l
P
S
N
R

0 250 500 750 1000

Steps

5

10

15

L
K
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

0 250 500 750 1000

Steps

36

38

40

K
er
ne
l
P
S
N
R

0 250 500 750 1000

Steps

5

10
L
K
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

0 250 500 750 1000

Steps

40

45

50

K
er
ne
l
P
S
N
R

0 250 500 750 1000

Steps

5

10

15

L
K
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

0 250 500 750 1000

Steps

36

38

40

K
er
ne
l
P
S
N
R

0 250 500 750 1000

Steps

5

10

15

L
K
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

0 250 500 750 1000

Steps

40.0

42.5

45.0

47.5

K
er
ne
l
P
S
N
R

0 250 500 750 1000

Steps

5

10

15

L
K
−
C
O
V

MetaKernelGAN

MetaKernelGAN (w/o meta-learned θD)

Figure 8. Intermediate kernel results for every adaptation iteration

(×2 upsampling for 0802.png, 0833.png, 0838.png, 0857.png, and

0853.png in DIV2K).

Method Nadapt Set14 B100 Urban100 DIV2K

MetaKernelGAN 10 44.72/2.56 43.42/2.99 45.99/2.39 46.88/2.31

MetaKernelGAN 25 46.23/2.44 45.94/2.38 47.37/2.16 48.00/2.08

MetaKernelGAN 50 45.49/2.49 45.41/2.65 46.47/2.42 46.81/2.37

Table R1. Average Kernel PSNR/LK-COV on SR benchmarks

across five runs for different Nadapt for ×2 upsampling.

E. MetaKernelGAN Adaptability to Images

with Limited Internal Information.

LR images are severely limited in internal informa-

tion when their resolution is small, resulting in the fall-

back on the learned kernel. This is often the case in

i) ×4 upsampling, where the LR images are tiny, and

ii) especially in smaller resolution datasets. To quan-

tify this, we compare the estimated discretized covari-

ance matrix of the adapted kernel after 200 steps, Σ̂Est200,

to that of the initial learned kernel, Σ̂Est0, and that of

the ground-truth kernel, Σ̂GT. Specifically, we compute

L
T = max(LK-COV(Σ̂Est200, Σ̂GT) − LK-COV(Σ̂Est200, Σ̂Est0), 0),

where LK-COV(a, b) =
∑N

x,y

∣

∣Σ̂a
x,y − Σ̂b

x,y

∣

∣, in three equal-

sized datasets B100, Urban100, and DIV2K, representing

small, medium, and large image resolutions, respectively.

By definition, the higher LT is, the closer the adapted ker-

nel is to the initial kernel relative to its distance from the

GT kernel and the higher the fallback rate. For ×2 upsam-

pling, the mean LT is 0.0 for all three datasets, indicating

no fallback. For ×4, the mean LT for B100, Urban100, and

DIV2K is 4.98, 3.78, and 3.25, respectively, indicating that

lower-resolution images lead to more frequent fallback.

F. Additional Qualitative Results

Fig. 9 & Fig. 10 show the comparisons of both the ker-

nel and image among the explicit kernel estimation methods

on our benchmark evaluation datasets for ×2 and ×4 up-

sampling respectively. Fig. 12 show more examples high-

ighting that DSKernelGAN is more susceptible to adapt to

faulty kernels than MetaKernelGAN as the former doesn’t

learn from the adaptation process. Lastly, we show more

real-world results among both implicit and explicit degra-

dation methods from images downloaded from the Internet

in Fig. 13.



Figure 9. Comparison of estimated kernel, along with its image ×2 upsampled using USRNet [39], among explicit kernel estimation

methods across different benchmark datasets. Zoom in for best results.



Figure 10. Comparison of estimated kernel, along with its image ×4 upsampled using USRNet [39], among explicit kernel estimation

methods across different benchmark datasets. Zoom in for best results. Part 1 of 2.



Figure 10. Comparison of estimated kernel, along with its image ×4 upsampled using USRNet [39], among explicit kernel estimation

methods across different benchmark datasets. Zoom in for best results. Part 2 of 2.



Figure 11. Kernel after 25, 50, 100, 200 adaptation steps for ×2

upsampling on 86000 of B100, img036 of Urban100, 0821 and

0824 of DIV2K (top to bottom).

Figure 12. Kernel after 25, 50, 100, 200 adaptation steps for ×4

upsampling on monarch and ppt3 of Set14, and 0879 and 0824 of

DIV2K (top to bottom).



No Ground-Truth

GT IKC DAN DASR Double-DIP

DIP-FKP BSRDM KernelGAN KernelGAN-FKP MetaKernelGAN

No Ground-Truth

GT IKC DAN DASR Double-DIP

DIP-FKP BSRDM KernelGAN KernelGAN-FKP MetaKernelGAN

No Ground-Truth

GT IKC DAN DASR Double-DIP

DIP-FKP BSRDM KernelGAN KernelGAN-FKP MetaKernelGAN

No Ground-Truth

GT IKC DAN DASR Double-DIP

DIP-FKP BSRDM KernelGAN KernelGAN-FKP MetaKernelGAN

Figure 13. Real-world visual quality comparison on×4 upsampling among models. Zoom in for best results. No ground truth is available.


