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In this supplementary material, we provide more details
on different modules of our method and describe results of
experiments that we mentioned in the main paper.

1. Additional Ablation Studies

1.1. Discrete Kernel: Fixed Vs Learnable

The recently proposed Hybrid Neural Rendering
Model [3] also employs several grid kernels to render clean
image from the camera motion blurred images, but they are
fixed. It applies convolution to clean rendered image with
all blur kernels and picks the one that produces the minimal
loss with the ground truth image. Fig. 1 shows rendered im-
ages from our method and our model that uses fixed discrete
kernels as Hybrid Neural Rendering model does. We can
see that the blur kernels cannot estimate spatially varying
defocus blur accurately and fail to render clean image. We
assume this is because the point spread function of defocus
blur is more complex than that of camera motion blur. De-
focus blur depends on various tangled optical factors, and
cannot be easily estimated with fixed blur kernels.

1.2. Patch Size Analysis

Patch size is a key factor that determines the rendering
quality and the training time. Larger patches mean more
shared neighbors, so they can effectively decrease training
time. However, rendering quality degrades as the number
of patches will decrease unless we do not raise the batch
size. Table 1 shows the quality metrics for rendered images,
the number of required rays for each pixel, and the training
times required for various patch sizes P . The number of
the target pixels P ′2 for P = 26, P = 22, P = 18 is 162,
122, 82, respectively. These results show that increasing
the patch size reduces the number of required neighboring
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Table 1. Ablation study: Patch size evaluated for real defocus
dataset. The average number of required neighboring rays per
pixel is denoted as #Rays.

Patch Size PSNR↑ SSIM↑ Brisque↓ Niqe↓ #Rays Time
P = 26 23.44 0.7228 29.50 3.44 2.64 0.40
P = 22 23.55 0.7258 30.25 3.41 3.36 0.48
P = 18 23.57 0.7501 29.64 3.38 5.06 0.57

Table 2. Compassion of our method with PDRF with its different
number of neighboring rays. Models are evaluated on real de-
focus dataset. ‘n’ in PDRF-n stands for the number of required
neighboring rays. * means that we modified PDRF to analyze its
performance for this setting.

Methods PSNR↑ SSIM↑ Brisque↓ Niqe↓ Time
PDRF-5 23.82 0.7382 32.18 3.75 1.00

PDRF-3* 23.50 0.7217 33.35 3.92 0.88
PDRF-2* 22.34 0.6713 36.74 4.09 0.70

Ours 23.55 0.7258 30.25 3.41 0.48

pixels, which in turn reduces the training time, but results
in quality degradation.

1.3. Comparison with Variants of PDRF [13]

In this subsection, we compare our proposed method
Sharp-NeRF with the very recently proposed method
PDRF [13]. We compared them in terms of their training
time and the image quality of their rendered images using
various metrics. As the required number of neighboring
rays is set to 5 in PDRF [13], PDRF-5 denotes this actual
work. As the required number of neighboring rays is a key
factor for training time, we reduced the number of neighbor-
ing rays of PDRF to decrease its training time to as low as
ours. Table 2 implies that our method requires significantly
lesser training time, and importantly, without any noticeable
rendering quality degradation compared to PDRF.
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Figure 1. Comparison on learanble blur kernel and fixed blur kernel. (a), (c): Our rendering module trained with fixed discrete kernels.
(b), (d): Ours (with learnable discrete kernels).
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Figure 2. Comparison of sharpness maps provided by various sharpness priors. (a): Sample images, and sharpness maps from (b):
Tenengrad, (c): SML, and (d): DMENet.
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Figure 3. Comparison of various sharpness priors in terms of the quality of rendered images. (a): SML, (b): Tenengrad, (c): DMENet.

2. Selection of Sharpness Prior

In our proposed method Sharp-NeRF, sharpness prior
has been used to measure the sharpness level of input im-
age pixels. These sharpness measurements determine how
much effort will be put in learning the discrete kernels for
those pixels. We have tested three sharpness priors in our
study. Among these priors, two are very famous focus mea-
sure operators. These operators are sum modified Lapla-
cian (SML) [12] and Tenenbaum gradient (Tenengrad) [4],
and these are hand-crafted. The third sharpness prior is
DMENet [6] which is deep learning-based and it has been
proposed recently.

Fig. 2 displays sharpness maps of different sharpness
priors. Depending on their working principle, SML and
Tenengrad measure sharpness using derivatives of pixels
which becomes hard to compute on textureless regions.
This is indicated by the blue and red boxes, respectively.
It’s evident that SML and Tenengrad tend to focus on sharp
regions primarily along edges. In contrast, DMENet does a
better work in distinguishing between sharp and blurry re-
gions even there is no or little texture. On the basis of this
observation, we decided to use DMENet [6] as our sharp-
ness prior. Fig. 3 shows a qualitative result for the perfor-
mance of these three priors.

3. Results on Synthetic Data

Table 4 and 5 show the quantitative results of experi-
ments conducted on synthetic defocus dataset. We evalu-
ated both Full-reference (PSNR, SSIM) and No-reference
metrics (Brisque, Niqe). Our rendering quality under Full-
reference metrics is not as good as compared to the result on
real deblur dataset. However, our method achieved sound

performance on par with state-of-the-art methods under no-
refernce metrics. On top of that, this all good performance
has been achieved while keeping the training time to less
than half an hour, which is the shortest time among all de-
blurring neural fields. In short, our method has set a new
state-of-the-art time for the deblurring neural fields.

4. No-Reference Metrics for Deblurring NeRF
The commercially available optical imaging devices

(cameras) have limited depth of field. Using these cameras,
usually, when an image is captured of a scene that has a
larger depth of field, some parts of the scene look blurred in
the image. Unless, the camera is tuned for the appropriate
larger depth of field, or some possessing like image stitch-
ing or defocus deconvolution is performed, those regions of
the scene that fall out of the range of depth of field of the
camera, appear blurred in the images. In contrast, an image
in which all the regions of the captured scene are sharp is
called an all-in-focus (AIF) image. Although, it is possible
to acquire defocused and all-in-focus pair by DSLR cam-
era in two sequential shots, such as [1] which collects 500
defocused and all-in-focus pairs by dual-pixel (DP) camera
via adjusting aperture size and exposure time in two sep-
arate shots. However, datasets collected by such methods
suffer from several artifacts such as inconsistent brightness
and mismatched contents. In other words, obtaining a reli-
able AIF and defocus image pair is very challenging. This
is the reason why, until recently, there has been a lack of
real image datasets that contain defocused and AIF image
pairs [14]. The same difficulty arises for NeRF frameworks.
The dataset that has been used in our study is the Deblur-
NeRF dataset [8]. In this dataset, the defocus blurred im-
ages were also captured using the large aperture, and hence



Table 3. Full-reference and No-reference image quality metrics.

PSNR ↑ Peak signal-to-noise ratio. It is derived from MSE and indicates the ratio of the
maximum pixel intensity to the power of the distortion.

SSIM [15] ↑ Structural similarity index. It combines the local image structure, brightness, and
contrast into a single local quality score

Brisque [10] ↓ Blind/referenceless image spatial quality evaluator. This model is trained on a database
of images with known distortions and as a result it can only assess the quality of images
with the same kind of distortion.

Niqe [11] ↓ Natural image quality evaluator. Despite being trained on a database of reference
images, this model can assess the quality of images that have arbitrary distortion.

Table 4. Quantitative results on synthetic defocus dataset under Full-reference metrics.

Cozy2room Factory Pools Tanabata Trolley Average Time
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ Hours

NeRF [9] 30.03 0.8926 25.36 0.7847 27.77 0.7266 23.90 0.7811 22.67 0.7103 25.93 0.7791 2.30
TensoRF [2] 30.04 0.8949 25.27 0.7966 26.81 0.6658 22.73 0.7701 22.18 0.7143 25.40 0.7683 0.42

Deblur-NeRF [8] 31.85 0.9175 28.03 0.8628 30.52 0.8246 26.26 0.8517 25.18 0.8067 28.37 0.8527 10.35
DP-NeRF [5] 32.11 0.9215 29.26 0.8793 31.44 0.8529 27.05 0.8635 26.79 0.8395 29.33 0.8713 20.20
PDRF-5 [13] 32.01 0.9310 25.60 0.7786 31.53 0.8686 27.70 0.8851 27.90 0.8841 28.95 0.8695 1.00
PDRF-10 [13] 31.90 0.9321 26.56 0.8102 31.29 0.8657 28.21 0.8952 28.48 0.8956 29.29 0.8798 1.67

Ours 31.32 0.9133 28.67 0.8979 30.51 0.8264 24.95 0.8536 26.03 0.8498 28.30 0.8682 0.43

Table 5. Quantitative results on synthetic defocus dataset under No-reference metrics.

Cozy2room Factory Pools Tanabata Trolley Average
Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓ Brisque↓ Niqe↓

TensoRF [2] 27.52 3.13 42.26 3.77 44.27 4.29 42.29 3.65 36.56 3.65 38.58 3.70
Deblur-NeRF [8] 17.85 3.09 35.60 3.57 39.93 4.08 37.20 3.63 35.35 3.56 33.19 3.59

DP-NeRF [5] 17.83 3.20 35.21 3.54 38.33 3.89 36.37 3.41 33.95 3.39 32.34 3.49
PDRF-5 [13] 21.19 3.11 27.96 3.74 44.27 4.62 36.75 4.00 34.94 3.46 33.02 3.79
PDRF-10 [13] 19.65 3.17 28.24 3.58 40.42 4.37 35.97 3.81 34.40 3.37 31.74 3.66

Ours 21.65 3.22 35.19 3.44 36.91 3.87 36.10 3.58 34.77 3.44 32.92 3.51

they are not free from errors. Owing to the mismatch be-
tween AIF and defocus blurred images, deblurring tech-
niques may suffer from inconsistent results when employ-
ing the full-reference metrics. The inconsistency among
full-reference metrics (especially PSNR) has been observed
and highlighted in the recent deblurring NeRFs [3, 7]. For
example, it has been mentioned in [3] that if the reference
images are blurry, the PSNR (and SSIM) values may be
worse. It has been observed in [7] that few blurry images
can still achieve higher PSNR than their sharp (deblurred)
counterparts. Due to these reasons, we have opted to in-
clude the No-reference metrics as well. When compared to
Full-reference metrics, generally, all No-reference quality
metrics typically perform better in terms of agreement with
a subjective human quality score.
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