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Figure 1. Qualitative comparison with other generative prior-based methods on out-of-distribution images. In all the examples, only UGP-
Net succeeds in robust image restoration without noticeable artifacts. The source images are collected from the internet1.

In this supplementary material, we present:

• Detailed architecture of the restoration module,

• Detailed architecture of the synthesis module,

• Mathematical definitions of the losses,

• Implementation details,

• Discussion on the impact of the pretrained networks,

• Additional comparisons on the robustness to out-of-
distribution images,

∗This work was done at POSTECH.
https://unsplash.com/

• Additional comparisons on denoising and deblurring
of natural images, and

• Additional qualitative comparisons on denoising, de-
blurring, and super-resolution.

S.1. Architecture of Restoration Module

We first describe the detailed architecture of the restora-
tion module, which consists of a structure encoder Rse, and
a merging network Rmg . The structure encoder consists of
one ConvBlock, and the merging network Rmg consists of
two ConvBlocks and one ToImage layer. A ConvBlock is
composed of three 3× 3 convolution layers, each of which
is followed by a Leaky ReLU activation layer. A ToImage

https://unsplash.com/


layer has a 3 × 3 convolution layer followed by a Leaky
ReLU activation layer. For the convolution layers of the
structure encoder, we use the same number of channels as
the last layer feature map of regression network R. For the
convolution layers of the merging network, we use 64 chan-
nels.

S.2. Architecture of Synthesis Module

Fig. 2 illustrates the network architecture of the synthe-
sis module. Our encoder E takes a regressed image xreg as
input and estimates a latent code in the F/W+ space [6],
which is composed of an intermediate feature map f16×16

and 12 w vectors. Then, the generator G synthesizes a
perceptually-realistic image from the estimated latent code.

Here, we present a detailed description of the encoder
network. The main path of the encoder E estimates the la-
tent code of spatial resolution 16 × 16 in the F space, and
its architecture is shown in Tab. 1(a). In the table, each En-
coderBlock consists of three ConvBlocks, and each Con-
vBlock has a 3×3 convolution layer, a Batch Normalization
layer, and a Leaky ReLU activation layer. We use average
pooling to halve the spatial resolution of intermediate fea-
ture maps.

The intermediate feature map after the fourth Average
Pooling layer is passed to a single map2style network pro-
posed by pSp [11]. After that, the feature map is passed to
12 fully-connected layers in order to estimate the latent code
in the W+ space. As mentioned in the main paper, we use
a single map2style network to estimate w vectors, which
significantly reduces computational overhead compared to
the original work [11] that estimates each w vector with the
corresponding map2style network. Tab. 1(b) presents the ar-
chitecture of the map2style network. In the table, each Con-
vBlock consists of a 3 × 3 convolution layer with stride 2
followed by a Leaky ReLU activation layer.

S.3. Mathematical Definitions of Loss Functions

To train the synthesis module, we use a weighted sum of
L1, Lper, and Ladv . L1(x) is defined as ∥x−xgt∥1. Lper(x)
is defined as ∥ϕ(x) − ϕ(xgt)∥2, where ϕ is an LPIPS [18]
network. These reconstruction losses (L1, Lper) encourage
the synthesis module to reconstruct the image accurately.
For the synthesis module to produce a realistic image, we
employ an adversarial loss, Ladv(x). Specifically, we adopt
the non-saturating loss of StyleGAN2 [8], which is defined
as:

Ladv(x) = −Ex [softplus(D(x))] (1)

where D is a discriminator.
To train the fusion module, we use a weighted sum of

L1, Lper, and Lcf . Lcf is a patch-wise contextual loss [10]
between xsyn and x̂. It maximizes the contextual similar-
ity between images. The images x and y can be represented
as collections of perceptual feature vectors {xi} and {yj},
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Figure 2. The synthesis module of UGPNet consists of an encoder
E and a generator G. The encoder estimates the latent code of
spatial resolution 16×16 in the F space in a feed-forward manner.
Then, a single map2style network takes the intermediate feature
map of size 32 × 32. The feature map is passed to additional 12
fully-connected layers after the map2style network, to estimate the
latent code in W+.
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(a) Encoder E
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Table 1. (a) Detailed architecture of our encoder E. Each En-
coderBlock consists of three ConvBlocks. Each ConvBlock con-
sists of a 3×3 convolution layer, a Batch Normalization layer, and
a Leaky ReLU activation layer. The intermediate feature map af-
ter the fourth Average Pooling layer (marked as yellow) is passed
to a single map2style network. (b) Detailed architecture of the
map2style network. Each ConvBlock has a 3×3 convolution layer
with stride 2 and a Leaky ReLU activation layer.

respectively, where i and j are feature indices. The contex-
tual similarity between two feature points xi and yj is then
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Figure 3. Qualitative comparison of denoising and deblurring on natural images [17].
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Figure 4. We investigate the impact of the pretrained knowledge
in the restoration and synthesis modules. Without the pretrained
regression network ((b) and (c)), UGPNet fails to recover image
structure (modified mouth and missing spot), and without the pre-
trained GAN model ((b) and (e)), UGPNet fails to generate realis-
tic texture, resulting in artifacts.

defined as follows:

CXij = exp

(
1− d̃ij

h

)
/
∑
k

exp

(
1− d̃ik

h

)
(2)

where d̃ij is the normalized cosine distance between feature
points xi and yj , and h is a bandwidth parameter. Then,
the contextual similarity between two images x, y can be
defined as:

CX(x, y) =
1

N

∑
j

max
i

CXij (3)

where N is the number of feature points. Finally, the con-
textual loss is defined as:

LCX(x, y) = − log (CX (ϕ(x), ϕ(y))) (4)

where ϕ is the perceptual network for extracting percep-
tual features. In our implementation, the relu3 4 layer of
VGG19 [12] was used as ϕ. Lcf applies LCX between x̂ and
xsyn in a patch-wise manner to compensate for the potential
misalignment.

S.4. Implementation Details

In all the training stages, we use a batch size of 8 and use
the Adam optimizer [9] with β1 = 0.9 and β2 = 0.999.
For the balancing weights in the loss functions, we use
λper = 10, λadv = 0.3, and λcf = 0.05. The learning
rate of 10−4 and the number of iterations of 20,000 are
used for training the restoration module and we use the best



model based on the PSNR score over 1,000 images of the
CelebA-HQ dataset [7]. For the synthesis module, we set
the learning rate to 10−4 for the encoder and generator, and
2.5 × 10−5 for the discriminator, and the number of iter-
ations to 40,000. For the fusion module, we set the initial
learning rate to 10−3 and reduce it by a factor of 0.1 at the
8,000th iteration. We use the best model based on the PSNR
score during 40,000 iterations.

S.5. Exploiting Pretrained Networks

We investigate the impact of the knowledge learned in
the pretrained networks within the restoration module and
the synthesis module. Specifically, we compare all varia-
tions of UGPNet initialized with pretrained weights or with
random weights in each module on deblurring, as shown
in Fig. 4. Without pretrained weights of the regression net-
work and the generative network, UGPNet has difficulty in
restoring faithful structure and generating realistic textures.

S.6. Additional Comparisons of Restoration of Out-
of-Distribution Images

As demonstrated in the main paper, UGPNet is robust
against catastrophic failures for images outside the training
distribution of the generative prior. Here, we present addi-
tional qualitative comparisons against state-of-the-art gen-
erative prior-based methods (GFP-GAN [13], GPEN [16],
and VQFR [4]) in Fig. 1. In all the examples, only UGPNet
recovers authentic image structures, whereas all the other
models produce severe artifacts.

S.7. Additional Comparisons of Denoising and De-
blurring on Natural Images

We train UGPNet on the LSUN-Church [17] dataset to
validate its applicability on natural images. For denoising,
we synthesize noisy images by adding Gaussian (µ = 0,
σ = 0.3) and Poisson noise (k = 30). For deblurring, we
apply random motion blur sampled from 2,000 motion blur
kernels of size 51 × 51. We provide additional qualitative
comparisons on denoising and deblurring with NAFNet [2]
trained on the same dataset in Fig. 3. As shown in the fig-
ure, UGPNet achieves more realistic high-frequency details
compared to the state-of-the-art work.

S.8. Additional Qualitative Comparisons

We provide additional qualitative comparisons against
recent learning-based algorithms in Fig. 5 and Fig. 6 for
denoising, Fig. 7 and Fig. 8 for deblurring, and Fig. 9 and
Fig. 10 for super-resolution. In the figures, UGPNet uni-
versally succeeds in high-quality image restoration for all
the tasks. In the case of denoising and deblurring, UGPNet
outperforms all the regression-based methods in terms of
realistic high-frequency detail generation and all the gener-
ative prior-based methods in terms of faithful recovery of

authentic image structures. In the case of super-resolution,
UGPNet is superior to the regression-based methods and
shows comparable performance to generative prior-based
methods.
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Figure 5. Qualitative comparison on denoising with recent regression-based methods including Uformer [15], NAFNet [2] and HINet [3].
The insets at the bottom of the ground-truth images are input degraded images.
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Figure 6. Qualitative comparison on denoising with recent generative prior-based methods including GFP-GAN [13], GPEN [16], and
VQFR [4]. The insets at the bottom of the ground-truth images are input degraded images.
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Figure 7. Qualitative comparison on deblurring with recent regression methods including Uformer [15], NAFNet [2] and HINet [3]. The
insets at the bottom of the ground-truth images are input degraded images.
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Figure 8. Qualitative comparison on deblurring with recent generative prior-based methods including GFP-GAN [13], GPEN [16], and
VQFR [4]. The insets at the bottom of the ground-truth images are input degraded images.
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Figure 9. Qualitative comparison on super-resolution with recent regression-based methods including RRDBNet [14] and ESRGAN [14].
The insets at the bottom of the ground-truth images are input degraded images.
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Figure 10. Qualitative comparison on super-resolution with recent generative prior-based methods including GFP-GAN [13], GPEN [16],
VQFR [4], GLEAN [1], and GCFSR [5]. The insets at the bottom of the ground-truth images are input degraded images.
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