Disentangled Pre-training for Image Matting (Supplementary Material)

Yanda Li¹, Zilong Huang², Gang Yu², Ling Chen¹, Yunchao Wei³, Jianbo Jiao⁴ ¹University of Technology Sydney, Australia ²Tencent, China ³Beijing Jiaotong University, China ⁴University of Birmingham, UK {liyanda95,wychao1987}@gmail.com, {zilonghuang, skicyyu}@tencent.com Ling.Chen@uts.edu.au, j.jiao@bham.ac.uk

1. Limitations

The training data we used is class-agnostic, and as a result no semantic information was considered explicitly (though maybe implicitly), which may restrict the potential of the proposed framework to be applied to other semanticrelated tasks.

2. Comparison with the Dense-CL Method

To verify our effectiveness, we compare our DPT with DenseCL [2] based on GCA [1]. Since the backbone of GCA is different from that of DenseCL, for a fair comparison, we replace the backbone with the ResNet50, and perform fine-turning after loading pre-trained weights from DenseCL. As shown in Table 1, our DPT achieves better performance with fewer parameters.

Table 1. Compare	with I	DenseCL	based	on	Comp-1k	ζ.
------------------	--------	---------	-------	----	---------	----

Method	Init.	Backbone	$\text{SAD}{\downarrow}$	$\text{MSE}~(10^{-3}){\downarrow}$
GCA	DenseCL	ResNet50	45.9	13.0
GCA	Supervised	ResNet34	35.3	9.1
GCA	DPT (Ours)	ResNet34	33.0	8.3

3. Ablation on losses

In our DPT, we adopt three kinds of losses, L1 regression loss, Composition loss and Laplacian loss. The impact of these loss functions (L_{l1} , L_{lap} and L_{comp}) on the final performance is shown in Table 2.

Table 2. Ablation on losses (50 epochs based on MatteFormer).

Method	Loss	SAD↓	MSE $(10^{-3})\downarrow$
MatteFormer	L_{l1}	21.9	3.6
MatteFormer	$L_{l1} + L_{lap}$	22.5	3.3
MatteFormer	$L_{l1} + L_{comp}$	22.2	3.5
MatteFormer	$\mathbf{L}_{l1} + L_{lap} + L_{comp}$	21.0	3.2

4. More fine-tuning qualitative results on Composition-1k

We fine-tune on Composition-1k with DPT initialization. As Fig. 1, Fig. 2, Fig. 3, Fig. 4 show, we provide more qualitative results of our DPT on the Composition-1k test set. From the results, it can be seen that our method performs well in various detailed foreground objects.

5. More fine-tuning qualitative results on Distinct-646

As Fig. 5 – Fig. 8 show, we further present more qualitative results of our DPT on Distinct-646 [1]. We first generate trimap by randomly dilating alpha mattes from the ground truth alpha matte with a threshold of 20 (following [3]). Then we use the fine-tuning model on Composition-1k to test directly on Distinct-646. We can see that our DPT achieves good performance, especially in detailed regions.

6. More fine-tuning qualitative results on Natural human images

To show the robustness of our method, we use a finetuning model on Composition-1k to test on 2k resolution natural human images as shown in Fig. 9. From left to right, we provide the image, generated alpha matte α , and the synthetic foreground generated by α and image. We can see that our method performs well at extracting the boundary of the human body, such as the hair part.

References

- [1] Yu Qiao, Yuhao Liu, Xin Yang, Dongsheng Zhou, Mingliang Xu, Qiang Zhang, and Xiaopeng Wei. Attention-guided hierarchical structure aggregation for image matting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13676–13685, 2020. 1
- [2] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning for self-supervised visual

Figure 1. Qualitative results of our method on the Composition-1k test set.

Image

Ours

GT

Figure 2. Qualitative results of our method on the Composition-1k test set.

Image

Ours

Figure 3. Qualitative results of our method on the Composition-1k test set.

Figure 4. Qualitative results of our method on the Composition-1k test set.

pre-training. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 3024–3033,

Figure 5. Qualitative results of our method on the Distinct-646 test set.

Image

Ours

Figure 6. Qualitative results of our method on the Distinct-646 test set.

Figure 7. Qualitative results of our method on the Distinct-646 test set.

2021. 1

[3] Qihang Yu, Jianming Zhang, He Zhang, Yilin Wang, Zhe Lin, Ning Xu, Yutong Bai, and Alan Yuille. Mask guided matting via progressive refinement network. In *Proceedings of* the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1154–1163, 2021. 1

Figure 8. Qualitative results of our method on the Distinct-646 test set.

