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1. More Ablation Analysis

Matrix Reconstruction. Here, we discuss the impor-
tance of matrix reconstruction in our proposed method and
describe the specific training strategy we employ to enhance
its effectiveness. As mentioned earlier in Section 3.3, the
video reconstruction process relies on fixed target features,
denoted as ZT and ZF

T, which serve as templates for guid-
ing the reconstruction. This fixed target feature approach
is crucial for ensuring that the reconstruction is meaningful
and does not introduce random artifacts that may adversely
affect the temporal self-similarity matrices SB and SF

B.
To address this, we adopt a training strategy where we

freeze the modules preceding the temporal self-similarity
(TSM) modules, as illustrated in Fig. 3, during the training
phase that involves the similarity-based video reconstruc-
tion loss. Specifically, we first train the entire network, in-
cluding all modules, using two prediction losses, denoted as
LP and LF

P. Once this initial training is complete, we then
freeze the front modules and solely focus on training the
TSM modules and their subsequent modules. This training
phase incorporates the prediction losses LP and LF

P, as well
as the reconstruction losses LR and LF

R.
To validate our hypothesis regarding the effectiveness

of this training strategy, we conduct an experiment where
we train the entire network using all prediction and recon-
struction losses simultaneously. However, the performance
achieved in this case is suboptimal, with an MAE of only
0.5187 and an OBO of 0.2649. In contrast, our proposed
method, with the selective freezing and separate training of
modules, achieves significantly better results, with an MAE
of 0.3841 and an OBO of 0.3860.

These experimental findings clearly demonstrate that our
design and training strategy significantly contribute to the
effectiveness of our method. By selectively freezing mod-
ules and focusing on separate training phases, we can im-
prove the performance of the network and achieve superior
accuracy in repetitive action counting tasks.

Mask Rate. To evaluate the effectiveness of the masked

Mask Rate MAE↓ OBO ↑
0.75 0.3971 0.3371
0.5 0.3956 0.3509

0.25 0.3909 0.3576

Table 1. Performance for different mask rates in the masked matrix
reconstruction method. The mask rate represents the division be-
tween the number of frames that are masked and the total number
of frames.

matrix reconstruction method, we conduct an ablation study
using different mask rates. We experiment with various
mask rates and analyze their impact on the performance of
our method. From Table 1, our analysis reveals that a mask
rate of 0.25 yields the best performance among the tested
rates.

Variance-Integrated Loss Weights Generation vs.
Handcrafted Loss Weights Design. We compare the per-
formance of our proposed variance-integrated loss weights
generation approach with the traditional handcrafted loss
weights design. Table 2 presents the performance metrics
obtained by both methods, highlighting the superiority of
our proposed approach. The proposed approach leverages
the inherent variance of the training data to dynamically
adjust the loss weights, allowing for a more adaptive and
precise optimization process. This results in improved ac-
curacy and better convergence of the model during training.
In contrast, the handcrafted loss weights design relies on
manual tuning and predefined weight values. While this
approach can achieve reasonable results, it lacks the adapt-
ability and flexibility of our proposed method.

Our experimental results demonstrate the effectiveness
and efficiency of the variance-integrated loss weights gen-
eration method, which automatically adapts the loss weights
based on the data’s inherent characteristics. This approach
eliminates the need for manual fine-tuning and provides a
more robust and scalable solution for the repetitive action
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RGB:FLow MAE↓ OBO ↑
0.2:0.8 0.3926 0.3642
0.4:0.6 0.3924 0.3779
0.5:0.5 0.3909 0.3576
0.6:0.4 0.3969 0.3642
0.8:0.2 0.3847 0.3709
Ours 0.3841 0.3860

Table 2. Performance comparison of variance-integrated loss
weights generation and handcrafted loss weights design.

counting task.

2. Predicted Density Map Visualization

In this section, we present visualizations of the predicted
density maps generated by our method. Figure 1 illustrates
the predicted density maps generated by our method. It is
evident that our approach effectively handles abrupt back-
ground changes and produces accurate density maps for ac-
tion counting. This demonstrates the robustness and relia-
bility of our method in capturing and quantifying repetitive
actions in various environmental settings.

However, as depicted in Figure 2, our method encounters
difficulties in handling long breaks during the video. These
interruptions in the action sequence pose a challenge for ac-
curate counting. We acknowledge that this is an area for
improvement and will be the focus of our future work.

3. Baseline Evaluation on UCFRep Dataset

To enable a comprehensive performance comparison on
the UCFRep dataset [7], we carefully review the relevant
literature [3, 7, 8]. Our examination reveals that [3] does
not conduct experiments on the UCFRep dataset, while [8]
does not provide code related to the UCFRep dataset. Addi-
tionally, although the code for [7] is available, reproducing
their reported results has proven challenging, as confirmed
by other researchers 1, and has also been noted in another
recent work [4].

To address these limitations and ensure a fair compar-
ison, we have re-implemented these methods specifically
for the UCFRep dataset [7]. For consistency, we em-
ploy the 3D-ResNext101 model [2] pre-trained on Kinet-
ics [1] as our encoder and maintain a consistent input size
of 112×112, following the settings of [7]. It is important to
note that we construct 64 frames for each video and conduct
our experiments without any data augmentation. Further-
more, we have re-implemented [8] with the S3D encoder [6]
and [3] with the Video Swin Transformer Tiny encoder [5],

1https://github.com/Xiaodomgdomg/Deep-Temporal-
Repetition-Counting/issues/8
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Figure 1. Visualization of predicted density maps by our method
showcases its ability to handle abrupt background changes and
accurately predict density maps for counting repetitive actions.
All three videos contain abrupt background changes, which are
the television screen, moving person, and moving camera from
top to bottom. The illustration examples are from the RepCount
dataset [3].
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Figure 2. Illustration of the influence of long breaks during the
video (the men stop to explain the exercise) on our method’s per-
formance, highlighting an area for improvement in future work.
The illustration examples are from the RepCount dataset [3].

in line with the specifications outlined in their respective
papers. We have meticulously followed the implementation
details provided in the original papers [3, 7, 8] to ensure a
fair and accurate comparison.

Table 3 presents the results of our baseline evaluation on
the UCFRep dataset. It is evident that our re-implemented
method achieves state-of-the-art performance, surpassing
all other baseline methods. This demonstrates the effective-
ness and superiority of our approach in the task of repetitive
action counting on the UCFRep dataset.



Method Encoder MAE↓ OBO ↑
⋆ Context [7] 3D-ResNext101 [2] 0.1470 0.7900
⋆ Zhang et al. [8] S3D [6] 0.1430 0.8000
#Context [7] N/A 0.7620 0.4120
#TransRAC [3] N/A 0.6401 0.3240
† Zhang et al. [8] 3D-ResNext101 [2] 0.4825 0.3125
† Zhang et al. [8] S3D [6] 0.4129 0.3542
† Context [7] 3D-ResNext101 [2] 0.4689 0.4800
† TransRAC [3] 3D-ResNext101 [2] 0.4409 0.4300
† TransRAC [3] Video Swin Tiny [5] 0.4139 0.4200
Ours 3D-ResNext101 [2] 0.3879 0.5100

Table 3. Performance comparison of various baseline methods on
the UCFRep dataset [7], demonstrating the state-of-the-art per-
formance achieved by our re-implemented method. † Our re-
implemented results. ⋆ Results from corresponding works. #
Results from Full [4].
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