
Supplementary Material

Lingrui Li1,2, Yanfeng Zhou1,2, Ge Yang1,2 *

1Institute of Automation, Chinese Academy of Sciences
2School of Artifical Intelligence, University of Chinese Academy of Sciences

{lilingrui2021, zhouyanfeng2020, ge.yang}@ia.ac.cn

1. Results
Table S1 summarizes the results of the performance

comparison of different competing robust methods and our
method. All the methods perform better on adversarial sam-
ples. Our method achieves the best result overall.

2. Examples
Figure S1 shows the examples of (a) target fundus im-

ages and their (b) pseudo labels and (c) pseudo boundaries.
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Figure S1. Examples of pseudo labels and boundaries of target im-
ages from the Drichti-GS dataset. Gray color region: OC; White:
OD.

3. More Ablation Study
To test the effectiveness of pseudo boundaries, we per-

formed two groups of experiments. In the first group of ex-
periments, we performed ablation on both clean and adver-
sarial samples for our method and find that adding boundary
loss Lbl improves performance. The results are summarized
in Table 3 and Table 4 of the original manuscript. Figure
S2 shows representative examples in which using pseudo
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boundaries to restrict boundary predictions generates more
precise and coherent predictions, especially in e.g., low-
contrast and small region.

Utilizing pseudo boundaries to enhance performance of
domain adaptation is motivated by the observation that seg-
mentation errors are more likely to occur near boundaries
of image objects. Similar to pseudo labels, pseudo bound-
aries help self-supervised learning by making neural net-
work models sensitive to edges of the image objects to be
segmented, as shown in Figure S2 (b). By jointly optimiz-
ing pixel labeling and boundary accuracy, our method out-
performs competing methods with no restrictions on bound-
ary predictions.

We performed a second group of experiments in which
we integrated our pseudo boundary scheme with the other
competing methods. Ablation experiments on both adver-
sarial and clean samples (Table S2 and S3.) show that us-
ing pseudo boundaries consistently improves their perfor-
mance, further supporting effectiveness of pseudo bound-
aries.
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        (a) GT                 (b) w/ ���            (c) w/o ���

Figure S2. Comparison of segmentation results (b) with pseudo
boundaries and (c) without pseudo boundaries versus (a) GT.
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Table S1. Quantitative comparison of different robust methods on the target domain datasets. Abbreviations: R: robust metrics; R.Dice:
robust Dice; R.ASD: robust ASD; ST.S: standard source model; R.S.: robust source model.

Method Optic disc segmentation Optic cup segmentation
Dice ASD R.Dice R.ASD Dice ASD R.Dice R.ASD

RIM-ONE-r3
AdvEnt [4] robust 90.68 10.35 75.18 29.70 72.38 13.85 51.13 32.26
BEAL [6] robust 85.05 22.46 54.78 91.95 73.42 18.98 38.53 49.27
DPL [1] robust 87.29 11.95 55.55 44.27 75.51 11.16 40.52 45.33
TT-SFDA [3] robust 87.57 12.16 53.45 55.83 77.09 9.00 35.62 43.23
TENT [5] robust 84.66 17.22 72.11 28.05 76.44 11.10 60.03 29.25
OCDA [2] robust 87.92 13.70 65.88 48.59 76.93 10.83 52.70 51.05
SFDA-FSM [7] robust 88.45 11.50 75.99 25.29 70.50 18.64 62.82 27.80
Ours (Standard source) 92.43 6.96 74.35 35.58 77.82 10.03 55.91 45.40
Ours (Robust source) 91.39 8.07 77.22 23.63 75.59 11.13 60.34 50.11
Ours (Both) 92.89 6.52 76.20 22.92 77.94 10.07 60.13 26.83
Drishti-GS
AdvEnt [4] robust 93.26 7.45 91.48 9.26 64.80 23.44 61.17 25.56
BEAL [6] robust 94.94 9.23 92.86 12.49 79.58 21.36 76.48 24.82
DPL [1] robust 95.40 4.70 95.02 5.57 83.55 11.37 77.47 15.82
TT-SFDA [3] robust 95.72 4.86 94.17 6.50 77.64 14.73 69.77 19.79
TENT [5] robust 94.53 6.67 94.20 6.77 80.16 13.48 75.02 17.02
OCDA [2] robust 95.87 5.08 92.36 9.35 77.08 15.59 63.62 25.13
SFDA-FSM [7] robust 95.47 5.00 80.74 28.34 78.85 14.37 67.70 16.39
Ours (Standard Source) 96.01 4.70 92.05 11.25 83.71 10.91 73.92 18.15
Ours (Robust Source) 95.67 5.09 95.55 5.13 82.87 11.55 78.08 15.11
Ours (Both) 96.51 4.01 95.29 5.25 83.56 11.11 80.02 13.69
Open Domain
AdvEnt [4] robust 90.27 7.45 71.99 51.20 64.80 23.44 34.05 81.72
BEAL [6] robust 91.45 5.83 30.18 64.20 80.08 7.55 8.99 70.74
DPL [1] robust 89.04 16.64 80.43 22.75 79.18 15.91 68.36 32.26
TT-SFDA [3] robust 82.49 32.98 49.14 55.96 77.68 15.05 42.40 56.58
TENT [5] robust 89.42 17.98 79.92 34.55 80.33 10.27 71.15 26.81
OCDA [2] robust 89.73 18.79 58.49 55.09 80.08 11.53 47.73 49.73
SFDA-FSM [7] robust 91.37 16.93 79.87 44.19 75.82 8.98 32.27 35.93
Ours (Standard source) 91.54 6.87 88.51 17.68 79.78 7.44 46.46 37.46
Ours (Robust source) 91.86 6.77 91.11 8.40 80.40 7.14 72.31 25.71
Ours (Both) 92.53 6.54 91.35 8.11 80.31 7.12 71.05 20.87

Table S2. Ablation results with different losses on adversarial
samples. (D ↑: %, ASD ↓: pixel.)

Method Compound(C) Open(O) Avg.
RIM-ONE-r3 Drishti-GS REFUGE val C C+O
D[%] ASD D[%] ASD D[%] ASD D[%] ASD D[%] ASD

TT-SFUDA 53.22 61.21 77.83 18.14 46.21 54.13 65.52 39.68 59.08 44.49
TT-SFUDA+Lbl 56.01 42.69 77.97 18.12 46.06 51.73 66.99 30.40 60.01 37.51

TENT 53.71 51.70 81.75 16.04 51.76 50.55 67.73 33.87 62.41 39.43
TENT+Lbl 62.75 35.50 77.42 17.25 70.34 30.91 70.08 26.37 70.17 27.89
SFDA-FSM 63.94 34.12 80.24 16.65 58.65 37.59 72.09 25.39 67.61 29.46
SFDA-FSM+Lbl 65.17 32.96 81.11 15.08 61.70 35.76 73.14 24.02 69.33 27.93

Table S3. Ablation results with different losses on clean samples.

Method Compound(C) Open(O) Avg.
RIM-ONE-r3 Drishti-GS REFUGE val C C+O
D[%] ASD D[%] ASD D[%] ASD D[%] ASD D[%] ASD

TENT 77.93 18.81 87.09 10.54 83.48 10.62 82.51 14.68 82.83 13.33
TENT+Lbl 81.81 10.88 82.05 10.26 82.05 10.63 81.93 10.57 81.97 10.59
TT-SFUDA 80.81 13.68 87.95 9.50 80.23 22.78 84.38 11.59 83.00 15.32
TT-SFUDA+Lbl 82.54 12.80 86.91 9.32 80.34 20.60 84.72 11.06 83.26 14.24
SFDA-FSM 78.27 19.10 89.51 9.85 79.42 8.62 83.89 14.48 82.40 12.52
SFDA-FSM+Lbl 85.42 8.77 89.54 9.15 81.68 8.04 87.48 8.96 85.54 8.65
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