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1. Results

Table S1 summarizes the results of the performance
comparison of different competing robust methods and our
method. All the methods perform better on adversarial sam-
ples. Our method achieves the best result overall.

2. Examples

Figure S1 shows the examples of (a) target fundus im-
ages and their (b) pseudo labels and (c) pseudo boundaries.
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Figure S1. Examples of pseudo labels and boundaries of target im-
ages from the Drichti-GS dataset. Gray color region: OC; White:
OD.

3. More Ablation Study

To test the effectiveness of pseudo boundaries, we per-
formed two groups of experiments. In the first group of ex-
periments, we performed ablation on both clean and adver-
sarial samples for our method and find that adding boundary
loss Lbl improves performance. The results are summarized
in Table 3 and Table 4 of the original manuscript. Figure
S2 shows representative examples in which using pseudo
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boundaries to restrict boundary predictions generates more
precise and coherent predictions, especially in e.g., low-
contrast and small region.

Utilizing pseudo boundaries to enhance performance of
domain adaptation is motivated by the observation that seg-
mentation errors are more likely to occur near boundaries
of image objects. Similar to pseudo labels, pseudo bound-
aries help self-supervised learning by making neural net-
work models sensitive to edges of the image objects to be
segmented, as shown in Figure S2 (b). By jointly optimiz-
ing pixel labeling and boundary accuracy, our method out-
performs competing methods with no restrictions on bound-
ary predictions.

We performed a second group of experiments in which
we integrated our pseudo boundary scheme with the other
competing methods. Ablation experiments on both adver-
sarial and clean samples (Table S2 and S3.) show that us-
ing pseudo boundaries consistently improves their perfor-
mance, further supporting effectiveness of pseudo bound-
aries.

(a) GT (b) w/

(c) w/o

Figure S2. Comparison of segmentation results (b) with pseudo
boundaries and (c) without pseudo boundaries versus (a) GT.
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Table S1. Quantitative comparison of different robust methods on the target domain datasets. Abbreviations: R: robust metrics; R.Dice:
robust Dice; R.ASD: robust ASD; ST.S: standard source model; R.S.: robust source model.

Method Optic disc segmentation Optic cup segmentation
Dice [ ASD [ R.Dice [ R.ASD | Dice [ ASD [ R.Dice [ R.ASD
RIM-ONE-r3
AdvEnt [4] robust 90.68 | 10.35 | 75.18 29.70 | 72.38 | 13.85 | 51.13 32.26
BEAL [6] robust 85.05 | 22.46 | 54.78 9195 | 7342 | 1898 | 38.53 49.27
DPL [1] robust 87.29 | 11.95 | 55.55 4427 | 75.51 | 11.16 | 40.52 45.33
TT-SFDA [3] robust 87.57 | 12.16 | 53.45 55.83 | 77.09 | 9.00 35.62 43.23
TENT [5] robust 84.66 | 17.22 | 72.11 28.05 | 76.44 | 11.10 | 60.03 29.25
OCDA [2] robust 87.92 | 13.70 | 65.88 48.59 | 76.93 | 10.83 | 52.70 51.05
SFDA-FSM [7] robust | 88.45 | 11.50 | 75.99 2529 | 70.50 | 18.64 | 62.82 27.80
Ours (Standard source) | 92.43 | 6.96 | 74.35 35.58 | 77.82 | 10.03 | 5591 45.40
Ours (Robust source) 91.39 | 8.07 77.22 2363 | 75.59 | 11.13 | 60.34 50.11
Ours (Both) 92.89 | 6.52 | 76.20 2292 | 77.94 | 10.07 | 60.13 26.83
Drishti-GS
AdvEnt [4] robust 9326 | 7.45 91.48 9.26 64.80 | 23.44 | 61.17 25.56
BEAL [6] robust 9494 | 9.23 92.86 12.49 | 79.58 | 21.36 | 76.48 24.82
DPL [1] robust 95.40 | 4.70 95.02 5.57 83.55 | 11.37 | 77.47 15.82
TT-SFDA [3] robust 9572 | 4.86 | 94.17 6.50 77.64 | 1473 | 69.77 19.79
TENT [5] robust 9453 | 6.67 | 94.20 6.77 80.16 | 13.48 | 75.02 17.02
OCDA [2] robust 95.87 | 5.08 | 92.36 9.35 77.08 | 1559 | 63.62 25.13
SFDA-FSM [7] robust | 95.47 | 5.00 | 80.74 28.34 | 78.85 | 14.37 | 67.70 16.39
Ours (Standard Source) | 96.01 | 4.70 | 92.05 11.25 | 83.71 | 10.91 | 73.92 18.15
Ours (Robust Source) 95.67 | 5.09 | 95.55 513 82.87 | 11.55 | 78.08 | 15.11
Ours (Both) 96.51 | 4.01 | 9529 | 525 |83.56 | 11.11 | 80.02 | 13.69
Open Domain
AdvEnt [4] robust 90.27 | 7.45 71.99 51.20 | 64.80 | 23.44 | 34.05 81.72
BEAL [6] robust 91.45 | 5.83 30.18 64.20 | 80.08 | 7.55 8.99 70.74
DPL [1] robust 89.04 | 16.64 | 80.43 2275 | 79.18 | 1591 | 68.36 32.26
TT-SFDA [3] robust 82.49 | 3298 | 49.14 5596 | 77.68 | 15.05 | 42.40 56.58
TENT [5] robust 89.42 | 17.98 | 79.92 3455 | 80.33 | 10.27 | 71.15 26.81
OCDA [2] robust 89.73 | 18.79 | 58.49 55.09 | 80.08 | 11.53 | 47.73 49.73
SFDA-FSM [7] robust | 91.37 | 16.93 | 79.87 44.19 | 75.82 | 898 32.27 35.93
Ours (Standard source) | 91.54 | 6.87 88.51 17.68 | 79.78 | 7.44 | 46.46 37.46
Ours (Robust source) 91.86 | 6.77 | 91.11 8.40 8040 | 7.14 | 7231 25.71
Ours (Both) 92.53 | 6.54 | 91.35 8.11 80.31 | 7.12 | 71.05 20.87
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