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1. Gradient Analysis of Contrastive Prototypical Loss
Here, we provide an analysis of gradients for contrastive prototypical loss. To ease the notion, we abbreviate similarity

between vector zi and zj as si,j and denote negative set N(i) ∪ Û as N̂(i). Therefore, the loss of a data sample xi is:
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The gradient with respect to the similarity si,j between a positive pair (zi, zj) for zj ∈ P (i) can be derived as:
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where 1 is an indicator function. Similarly, the gradient with respect to the similarity si,m between a negative pair (zi, zm) for
zm ∈ N(i) is:
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We can see that, the gradient of the proposed loss follows the same pattern as the standard supervised contrastive loss. Positive
pairs are treated equally and scaled by the temperature and the cardinality of the positive set. The property of implicit hard-case
mining, i.e., proportional to the exponential term exp(si,m/τ), is inherited from a typical contrastive loss in the negative term.

2. CPP as an Energy-based Model
The overall objective of an energy-based model [10] (EBM) is to obtain an energy functionEθ(x) : RD → R parameterized

by θ that maps the high dimensional input x to a scalar value. Giving an energy function Eθ(·), its probability density p(x)
can be expressed through Gibbs distribution:

pθ(y|x) =
exp(−Eθ(x, y)/τ)∫
y′
exp(−Eθ(x, y′)/τ)

=
exp(−Eθ(x, y)/τ)
exp(−Eθ(x)/τ)

, (4)



where Eθ(x) is the Helmholtz free energy and τ is the temperature factor. Then we have:

Eθ(x) = τ · − log

∫
y′
exp(−Eθ(x, y′)/τ). (5)

When making predictions under our framework, the categorical distribution can be represented as:

p(y|x) = exp(sx,y/τ)∑K
y′=1 exp(sx,y′/τ)

, (6)

where sx,y = 〈f{θ,P}(x), µ̂y〉. When connecting Eq. 6 with Eq. 4 and let Eθ(x, y) = −sx,y , we see that the energy of x can
be expressed as:

Eθ(x) = τ · − log

K∑
y=1

exp(sx,y/τ), (7)

which is dominated by the largest similarity sx,y∗ given an appropriate temperature τ . The above analysis drives to a conclusion
that assigning a data sample to its nearest prototype will generate the lowest energy for the system (i.e., a more stable system).
Therefore, the question becomes whether the proposed contrastive prototypical loss serves as a qualified energy loss function.

To see this, we first simplify Eq. 1 to a formula where there is only one positive sample zp:

Li = − log
exp(si,p/τ)∑
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,
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By substituting zp with the target value prototype µ̂, we have:

Li = −〈zi, µ̂〉︸ ︷︷ ︸
push down energy for target prototype

+ log
∑
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exp(si,n/τ)

︸ ︷︷ ︸
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. (9)

When the above loss is minimized, the first term will push down the energy for target value prototype µ̂ and the second term
will increase energies for other prototypes. Hence, the above simplified loss is an effective loss function for the energy model.
Note that the ground-truth prototype µ̂ is unavailable during training stage and it is approximated by a group of dynamically
evolved positive embeddings from train data. It is worth pointing out that, unlike the contrastive divergence approximation
used in [11], we also include previous classifiers in our loss. Nevertheless, our formulation does not suffer from the over
suppression issue of previous classes likewise, as we use static non-parametric prototypes as classifiers.

Finally, we show that encouraging uniformity is against the principle of the energy model. By encouraging uniformity as a
typical supervised or self-supervised contrastive loss [5, 9], we rewrite Eq. 8 into:
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(10)

where P̂ (i) = {zj : yj = yi, i 6= j}. As shown in Eq 10, we can see that the second term in log operation acts adversely with
respect to −si,p which minimizes the energy between a sample and its corresponding prototype. Hence, pairs that encourage
uniformity should be, in principle, removed from the negative set. Through the lens of energy-based models, we acknowledge
that the training process of CPP is equivalent to minimize the energies of data samples and the inference process can be
interpreted as selecting a task-specific prompt that minimizes the energy of a data sample in a given system.



Algorithm 1: Model Training

Input: Frozen embedding function fθ, number of tasks T , training epochs E, training set {(xti, yti)}
nt
i=1}Tt=1, prompt

length Lp and centriod number C.
for t = 1, · · · , T do

Initialize: MLP mσt , task-specific group P t, U = ∅, Û = ∅
for class k ∈ Yt do

Generate key prototype µk with Eq.1
U ← U ∪ µk

end
for e = 1, · · · , E do

Optimize σt, P t through Eq.6
end
for class k ∈ Yt do

Generate value prototype µ̂k with Eq.1 after prepending P t

Û ← Û ∪ µ̂k
end

end
Output: {P t}Tt=1, U and Û

Algorithm 2: Model Inference

Given: fθ, U , Û , {P t}Tt=1, query function q(, , r).
Input: Test image x
Initialize: Q̂ = ∅
q = fθ(x)[0, :] ; // Use class token as query vector.
J = q(q, U, r) ; // Retrieve indexes of J candidate prompts.
for j ∈ J do

qj = fθ,P j (x)

Q̂← Q̂ ∪ qj
end
Make prediction following Eq.7
Output: label y

3. Training and Inference Algorithms

The training and inference algorithms of CPP are summarized in Algorithm 1 and Algorithm 2, respectively. Note that
when multi-centroid prototypes are used, the prototype generation process is substituted by a spectrum clustering process as
described in Sec. 3.4.

4. Relation with Existing Taxonomy

The field of continual learning features several classification schemas [7,15]. In this discussion, we anchor our interpretation
to the taxonomy presented in [7]. At its core, our proposed method, CPP, represents a hybrid approach. When examining
the task-specific prompt design, CPP echoes principles of modular architecture approaches [12, 19, 24]. These strategies
typically augment learning capabilities in the face of novel tasks, ensuring task-specific refinements. Yet, CPP carves out
its distinction by sidestepping the pitfalls of high memory consumption and computational demands. This efficiency is
credited to the prompt-tuning mechanism we’ve adopted. Moreover, our method ingeniously deploys prototypes, which,
when married with contrastively optimized task-specific prompts, avoid the requirement of task identities during inference.
Assessing from the vantage point of these prototypes, CPP aligns with memory-based strategies [2, 3] and more pointedly
with episodic memory techniques [4]. Yet, while conventional memory strategies often rely on storing and revisiting explicit
exemplars, CPP innovates by distilling these into compressed prototypes, which then double as classifiers. Lastly, from a
regularization perspective, task-specific prompt-tuning inherently provide strong regularization in the parameter space by



freezing most parameters. Drawing from the model functionality perspectives of [1], our contrastive prototypical loss manifests
as a functional space regulator. The prime constraint is to ensure minimal functional convergence between disparate class
samples.

5. Real-world Applicability of CPP
The pragmatic viability of a continual learning approach is of great importance. We delve into the practicality of CPP by

examining facets such as memory consumption, data privacy, and computational efficiency.
Memory footprint. It would be over-optimistic to generalize a model with the fixed learning capacity to “life-long” learning
scenarios without forgetting. Thus, a judicious expansion strategy for the model is indispensable. Our proposal leverages
prototypes with task-specific prompts to realize memory-efficient continual learning. Incremental memory demands in our
scheme are essentially linked to storing these prototypes and task-specific prompts. For each novel class, CPP necessitates the
addition of 12.2× 768 parameters equating to roughly 1/15 of a singular ImageNet image (with size 224× 224× 3). Given
such frugality, CPP holds promise for scaling, accommodating thousands of classes given a modern computational device.
Data privacy. Under privacy sensitive scenarios (e.g., healthcare applications), the retention of explicit data exemplars could
be fraught with risks or outright impractical. In contrast to general memory-based methods, CPP encapsulates data as fictitious
prototypes, offering an enhanced privacy shield. Therefore, CPP is arguably preferable for privacy sensitive scenarios.
Computational efficiency. During the learning phase, the prompt-tuning methodology ensures that back-propagation
predominantly impacts only a tiny portion of parameters. As such, CPP is more computational efficient than methods that
need to update all parameters under the same architecture. Moreover, the knowledge retention in CPP is architectured
around prototypes, used as reference anchors, obviating the need to forward raw exemplars. While the inference phase could
impart some computational cost due to our task-specific prompt architecture, our empirical evaluations (as seen in Sec. 4.5)
demonstrate that even on the most challenging benchmark, i.e., split ImageNet-R, this overhead remains affordable. Crucially,
the granularity of this computational overhead can be fine-tuned by modulating the centroid number, C, and the neighbor
radius, r.

6. Experimental Setups
6.1. Evaluation Metrics

Let Ai,j denotes the classification accuracy for the j-th task after training on the i-th task. The Average Accuracy (Ai) and
Forgetting (Fi) aftering learning task i is then defined as follows:

Ai =
1

i

i∑
j=1

Ai,j ,

Fi =
1

i− 1

i−1∑
j=1

max
j′∈{1,··· ,i−1}

(Aj′,j −Ai,j) .

Assuming there are T tasks in total, we report the accuracy from the end session as Acc = AT following [14, 20]. We notice
that some previous studies [6, 13, 25] report the macro average over all sessions, i.e., Acc = 1

T

∑T
i=1Ai. To ease reference,

we provide results under both protocols in Appendix 8.1.

6.2. Data Augmentations

In this section, we detail transformations used in our experiments. In general, we adopt standard data transformations used
for contrastive learning, which include:

• RandomResizedCrop (size= 224, scale= [0.8, 1.0])

• RandomHorizontalFlip (p = 0.5)

• RandomColorJitter (p = 0.8, brightness= 0.4, contrast= 0.4, saturation= 0.2, hue= 0.1)

• RandomGrayscale (p = 0.2)

• RandomGaussianBlur (p = 0.1, min radius= 0.1, max radius=2)



20 40 60 80 100
Class num

70

75

80

85

90

95

Av
er

ag
e 

ac
c 

(%
)

Ours
DualPrompt
L2P
ProtoAug
iCaRL

10 20 30 40 50 60 70 80 90 100
Class num

65

70

75

80

85

90

95

100

Av
er

ag
e 

ac
c 

(%
)

Ours
DualPrompt
L2P
ProtoAug
iCaRL

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Class num

60

70

80

90

100

Av
er

ag
e 

ac
c 

(%
)

Ours
DualPrompt
L2P
ProtoAug
iCaRL

Figure 1. Comparison with state-of-the-art methods on CIFAR-100 under multiple splits. Left: 5-splits, Middle: 10-splits Right: 20-splits.

• RandomSolarization (p = 0.2)

• Normalization

Note that the normalization operation of an embedding function uses the same statistics as the ones used in its corresponding
pre-training method.

7. Implementation Details for Reproducibility
• Upper-bound. For establishing upper-bound performance, we fine-tune the pre-trained embedding functions on the

target datasets with all classes visible. The initial learning rate is set to 1 × 10−4. All other settings follow the same
configuration as training CPP to keep a fair comparison. One exception is fine-tuning MAE on ImageNet-subset where we
found the transformations tailored for CPP generate inferior results. As such, we have adhered to the data transformations
detailed in the original work [8].

• iCaRL. For iCaRL, we initiate our experimentation using the ResNet-18 model, following the original setting [18].
Given that the choice of the embedding function is orthogonal to the technical design in iCaRL, we switch the embedding
function to the same pre-trained Transformer as used in CPP. The learning rate is set to 1× 10−4 according to a grid
search and the memory size is set to 2000.

• PASS. For PASS [25], the original paper uses 50 classes in the initial task and 5 class for each incremental task. To
synchronize with our configuration, we modify the split to 10 classes per task and 10 tasks in total. Similar to reproducing
iCaRL, we run experiments under both ResNet-18 and pre-trained Transformer backbones and the learning rate is set to
1× 10−4 for Transformer. Other hyper-parameters remain the same as in the original paper.

• DualPrompt. DualPrompt [20] is originally built upon Transformer structures, so we only change the pre-trained weights
to MAE to avoid information leakage. All other parameters adhere strictly to the guidelines of the originating paper.
Specifically, we set Le = 20, Lg = 5, starte = 3, ende = 5, startg = 1, and endg = 2. We train the model for 50
epochs with the constant learning rate of 0.005 and the Adam optimizer is used.

8. Additional Empirical Results
8.1. Results under Different Protocols

Detailed results on CIFAR-100 under different splits. Here, we provide detailed task-wise results on split CIFAR-100
under different splits. As shown in Fig. 1, CPP exhibits clear and consistent improvements over other methods and the gaps
are enlarged as the length of the task sequence increases.
Results under different metric. In Table 1, we provide results under two different protocols as described in Appendix 6.1.

8.2. Comparison to Architectural Methods

In this section, we compare CPP with different architectural methods. It is non-trivial to migrate ConvNet-based methods to
Transformer-based methods, so we follow the practice in DualPrompt [20] to measure the difference between a method and its



Task num Dataset Pre-train Accuracy Forgetting
Avg. (↑) Last (↑) Avg. (↓) Last (↓)

5 split CIFAR-100 ViT 93.78±0.12 91.20±0.06 2.77±0.18 2.98±0.21

10 split CIFAR-100 ViT 94.18±0.09 91.12±0.12 2.39±0.22 3.33±0.18

20 split CIFAR-100 ViT 93.49±0.07 89.81±0.17 2.84±0.15 3.70±0.13

5 5-datasets ViT 94.77±0.19 92.92±0.17 0.16±0.08 0.19±0.07

10 split ImageNet-Sub MAE 95.14±0.06 93.82±0.06 0.82±0.04 1.98±0.06

10 split ImageNet-R ViT 78.22±0.14 74.88±0.07 3.32±0.19 3.65±0.03

Table 1. Results of CPP under different protocols.

Method Backbone Avg. Acc (↑) Diff (↓) Pretrained Buffer size Additional Parameters
MB %

Upper-bound

ResNet18

80.41† - - - - -
SupSup [22] 28.34±2.45‡ 52.07 7 0 3.00 6.50%
DualNet [16] 40.14±1.64‡ 40.27 7 1000 5.04 10.90%
RPSNet [17] 68.60† 11.81 7 2000 181.00 40.4%
DynaER [23] 74.64† 5.77 7 2000 19.80 43.80%

Upper-bound ResNet152 88.54† - - - - -
DynaER [23] 71.01±0.58‡ 17.53 7 2000 159.00 68.50%

Upper-bound Customized ViT 76.12† - - - - -
DyTox [6] 62.06±0.25† 14.06 7 2000 0.04 0.38%

Upper-bound

ViT-B/16

93.15±0.09 - - - - -
L2P [21] 83.86±0.28‡ 9.29 X 0 1.94 0.56%
DualPrompt [20] 86.51±0.33‡ 6.64 X 0 1.90 0.55%
CPP (ours) 91.12±0.12 2.03 X 0 0.35 0.10%

Table 2. Comparison with architecture-based methods on split CIFAR-100. Diff (lower is better) measures performance gap between a
method and its corresponding upper-bound under the same backbone. † denotes the results reported from the original papers. ‡ represents
results copied from DualPrompt [20].

Methods Split CIFAR-100
Avg. Acc (↑) Forget (↓)

K-means 90.77±0.28 3.39±0.34

Spectral Clustering 91.12±0.12 3.33 ±0.18

Table 3. Results under different clustering algorithms used for generating multi-centroid prototypes.

own upper-bound. As shown in Table 2, CPP largely bridges the gap between incremental learning and joint learning. Besides,
CPP is also more memory efficient than alternatives.

8.3. Extra Ablation Studies

Ablation study on MLP designs. As the MLP neck is important for training task-specific prompts in our framework, we here
probe relations between the MLP width (the number of hidden units), depth (the number of layers), and prompt quality. As
shown in Fig. 3, either monotonously increasing the number of layers or hidden units does not bring benefits. A three-layer
MLP with 2048 hidden units, which is the same as the conventional MLP neck used in self-supervised representation learning,
produces the best performance. Therefore, we adopt this setting as default across our experiments.
Generation of multi-centriod prototypes. In CPP, we leverage spectral clustering to produce multi-centroid prototypes.
Herein, we provide results using the commonly used k-means clustering algorithm. As shown in Table 3, spectral clustering
empirically demonstrates a better performance.
Effectiveness of the query function. In the design of our nearest neighbor query function, we surmise that data samples tend
to locate near to their corresponding mass centers giving an appropriate embedding function, so it is important to verify that,
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given r nearest neighbors, whether or not the target prompt falls in the candidate group. To this end, we demonstrate the top-r
accuracy under 5-centroid prototypes in Fig. 2. We can see that the top-r accuracy increases monotonically according to the
value of r and r = 3 works fairly well. Hence, a query vector in combination with key prototypes and a reasonable vicinity
range can be effectively leveraged to retrieve the candidate task-specific prompts.

9. Detailed Visualizations and Analysis
Fig. 4 displays training samples from CIFAR-100 in the latent space. The first row shows original data samples with their

corresponding class means and multi-centroid key prototypes. As shown in the figure, both class means and multi-centroid key
prototypes effectively characterize the distribution of each class. In the second row, when replacing key prototypes with their
corresponding value prototypes, there is a clear mismatch between the class distributions and their value prototypes. This
observation manifests clear distribution shifts in the latent space after adding task-specific prompts, justifying the necessity of
decoupling prototypes into the key prototypes and value prototypes. The third row exhibits value prototypes and embeddings
of data samples after adding task-specific prompts. We can find that both class means and multi-centroid value prototypes fit
the learned class distributions well. Nevertheless, multi-centroid value prototypes can better capture outliers, thus being more
representative.

In Fig. 4, we show the efficacy of both key and value prototypes for representing train data. Here, in Fig. 5, we exhibit their
performances on test data. As shown in the first row, key prototypes work fairly well in representing the original test data
embeddings and thus can be safely leveraged in the coarse retrieval process. The second row further validates the necessity of
decoupling key and value prototypes from the perspective of test data. As shown in the second row, there are a few classes
whose key prototypes can still effectively characterize their corresponding data distributions after task-specific prompts were
added, suggesting minor distribution shifts. However, most classes fail to reuse key prototypes after adding task-specific
prompts. In contrast, as shown the third row, value prototypes can always be reliably used as classifiers for predictions.



Figure 4. Visualizations for train data in CIFAR-100. First row: Original data embeddings with class mean (left) and multi-centriod (right)
key prototypes. Second row: Original data embeddings with class mean (left) and multi-centriod (right) value prototypes. Third row: Data
embeddings after adding task-specific prompts with class mean (left) and multi-centriod (right) value prototypes.



Figure 5. Visualizations for test data in CIFAR-100. First row: Original data embeddings with class mean (left) and multi-centriod (right)
key prototypes. Second row: Original data embeddings with class mean (left) and multi-centriod (right) value prototypes. Third row: Data
embeddings after adding task-specific prompts with class mean (left) and multi-centriod (right) value prototypes.
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