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A. Experimental Setups
A.1. Datasets

We employ three datasets, which are extensively used in
the literature of class-incremental learning, for our exper-
iments: CIFAR-100, ImageNet-100 and ImageNet-1000.
CIFAR-100 contains 60,000 images of the size 32x32 over
100 classes, including 50,000 training images and 10,000
test images, respectively. ImageNet-100 is a subset of
ImageNet-1000 with only 100 classes, randomly sampled
from the original 1000 classes and it contains about 130,000
training images and 5,000 testing images. For both datasets,
we select 50 classes as the base classes, and the rest 50
classes are equally divided for incremental learning phases.
ImageNet-1000 has 1000 classes, we use the first 500
classes to train the base model and the rest 5000 classes
are used for incremental learning.

A.2. Training Details

All models are trained on RTX 3090 GPUs. We use
ResNet-32 and ResNet-18 for CIFAR-100 and ImageNet,
respectively. We add a nonlinear projection head after the
ResNet [2], and remove the ReL.U in the penultimate layer
to allow the features to take both positive and negative val-
ues for the cosine classifier [3]. We train the base 50%
classes model for 200 epochs on CIFAR-100 and ImageNet
using SGD with a batch size of 256. The learning rate is
initialized to 0.1 and follows a cosine annealing schedule.
At each incremental learning phase, we finetune the model
for 160 epochs with the memory bank M, batch size of
128, and new data batch size of 128. The learning rate is
initially set to 0.005 for CIFAR-100 and ImageNet with the
cosine annealing strategy. At the end of each incremental
phase, we apply the herding sampling strategy proposed in
iCaRL [9] and use the data in memory bank to train a unified
classifier with a learning rate 0.1 and batch size 256. Then,
we evaluate the model on the union of all the encountered
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Table 1. Average Accuracy of different margin applied in the
triplet contrastive-relationship preserving loss
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Figure 1. The accuracy of the first incremental step under the 5-
phase setting on CIFAR100.

test datasets.

B. Hyperparameter Study

In this section, we report the ablation studies on two dif-
ferent hyperparameters, including the margin coefficient o
in TCP loss, and the regularization coefficient « in the over-
all loss function. We perform all experiments on CIFAR100
under 5-phase setting.

B.1. The Effect of the Margin Coefficient

In our TCP loss, we need to choose a proper margin co-
efficient o. In triplet loss [11], they regard o as a constant
number for each triplet to learn new knowledge. However,
TCP loss aims to distill old knowledge from a pretrained
old model. Thus, the pretrained model can provide more in-



CIFAR-FS 5-way  FC100 5-way

Model backbone
1-shot  5-shot 1-shot  5-shot

TADAM [5] ResNet-12 - - 40.1 56.1
Shot-Free [8] ResNet-12  69.2 84.7 - -
TEWAM [7] ResNet-12 704 81.3 - -
ProtoNet [12] ResNet-12  72.2 83.5 37.5 52.5
MetaOptNet [10] ResNet-12  72.6 84.3 41.1 55.5
RethinkDistill [13] ResNet-12  73.9 86.9 44.6 60.9

RethinkDistill [13] + TCP  ResNet-12

74.1 87.6 44.7 62.1

Table 2. Average few-shot classification accuracies (%) on CIFAR-FS and FC100 datasets.

formative margins that indicate the sample similarities in
each old triplet. For instance, if the negative sample is
highly similar to the anchor sample, then the margin will
be small; otherwise, the margin will be large. This addi-
tional similarity information in old model’s margin will
help TCP loss to preserve old knowledge, so we use the
old model’s margins as o instead of a constant o. Note that,
when we compute the contrastive relationship D;y i of new
model, we simultaneously compute the contrastive relation-
ship D; ;i od old model as the old margin o. As shown
in Table 1, the results indicate that the average accuracy
achieved by using the old model’s margins outperforms the
best constant o choice by 1.87%. This experiment demon-
strates that incorporating the more informative margins of
the old model is an effective approach to improve perfor-
mance.

B.2. Regularization Coefficient Stability

The overall loss function of the distillation-based incre-
mental learning methods can be described as Equation 1:

L = Lasct, + aLqistill (D

where Laocr, and Lrcp denote asymmetrical augmented
contrastive loss and the distillation loss, o denotes the reg-
ularization coefficient.

To investigate the impact of the regularization coeffi-
cient a, we employed the proposed A2CL to learn new data
and evaluated the effectiveness of three different distillation
losses in preserving old knowledge: point-wise FDL [3],
pair-wise IRD [1], and our proposed TCPqy,.

Figure 1 displays the first phase accuracy of three distil-
lation losses with varying values of the regularization coef-
ficient a. FDL (blue line) and IRD (red line) exhibit sensi-
tivity to the value of «, with appropriate values for o only
found within a narrow range. In contrast, TCP is less sen-
sitive to the regularization coefficient o than FDL and
IRD. When using the TCP (green line) loss, the appropriate
« value can be chosen from a wide range (from 40 to 130),

as shown in Figure 1. This outcome is expected since TCP
offers greater flexibility to allow for changes in the feature
space when learning new tasks. When « is very large, the
distillation loss carries greater weight, and the optimizer en-
deavors to minimize the distillation loss. In this case, FDL
and IRD aim to maintain the exact value of old feature posi-
tions or similarities, leading the model to sacrifice the learn-
ing of new classes. However, using the TCP loss with a
large a enables the model to easily learn new classes since
the TCP loss only preserves the contrastive relationship of
features instead of any exact value.

C. TCP on Few-shot Learning

Few-shot scenarios are very common in real-world ap-
plications due to the long-tail distribution of data [6, 14].
In such scenarios, the model requires fine-tuning using a
limited number of samples from new tasks [5, 12, 13]. We
investigate whether the TCP loss can improve performance
in the important few-shot scenarios by plugging it into ex-
isting few-shot learning algorithms. We report the few-shot
learning ability of the proposed TCP loss on CIFAR-FS and
FC100 datasets in Table 2.

The CIFAR-FS (CIFAR100 Few-shots) dataset is de-
rived from the original CIFAR-100 by splitting 100 classes
into 64, 16, and 20 classes for training, validation, and test-
ing. The FC100 (Few-shot CIFAR100) dataset is also de-
rived from CIFAR-100. Different from CIFAR-FS, it first
groups the original 100 classes into 20 high-level classes,
then it splits the 20 high-level classes into 12, 4, and 4
classes for training, validation, and testing. This results
in 60 classes for training, 20 classes for validation, and 20
classes for testing.

TCP can easily be plugged into few-shot learning
methods and boost their performance. As shown in Ta-
ble 2, we plug the proposed TCP loss into RethinkDis-
till [13] and denote it as RethinkDistill+ TCP. TCP can ef-
fectively boost the performance of the original RethinkDis-
till on both CIFAR-FS and FC100 datasets. RethinkDis-



ID newimage/class oldimage/class Avg. Acc
A 500 500 77.01%
B 500 100 73.45%
C 300 300 75.96%

Table 3. Average Accuracy of the 50 old classes with different
number of new images and old images per class in CIL.

till+ TCP outperforms the original RethinkDistill on both
datasets. Notably, we observe that TCP can bring more sig-
nificant improvements in the 5-way 5-shot setting than in
the 5-way 1-shot setting. This result is expected because in
the 5-shot setting, the feature space needs to be more flexi-
ble to learn new data than in the 1-shot setting. Thus, TCP
can provide even more performance improvements in the
5-shot setting.

In fact, the benefits of TCP loss can be leveraged in
various scenarios where the model needs to effectively
learn new knowledge while distilling relevant old knowl-
edge from a teacher model. These scenarios include few-
shot [12, 13], incremental [4, 9], and others. By simply in-
tegrating TCP loss into the original algorithms, we can en-
hance their performance.

D. The effect of class imbalance problem

As we mentioned in the abstract and introduction, the
imbalance problem in CIL makes it difficult to preserve the
feature relation of old classes and hard to learn the feature
relation between old and new classes. To empirically sub-
stantiate our assertion, we devised a meticulous experiment.
Specifically, we continually learn ten new classes based on
a pretrained 50-class classifier on CIFAR-100 with the con-
trastive distillation loss [1] and evaluate the average accu-
racy on the 50 old classes. The findings, presented in Tab. 3,
reveal the following: In case A, where all training data is
utilized during continual learning (serving as our baseline),
the mean accuracy of the old 50 classes stands at 77.01%.
In case B, which limits the storage to merely 100 images
for each old class, there’s a noticeable decline in accuracy
from 77.01% to 73.45%. This case shows that the imbal-
ance problem between old and new classes can truly make
it difficult for the model to preserve the accuracy of the old
classes. However, in case C, all classes have 300 training
images, which means that the data in each class is balanced.
In this case, the average accuracy of old classes is much
higher than case B and only 1.05% lower than the baseline.
Consequently, it becomes evident that the imbalance indeed
impedes the model’s capacity to preserve the feature rela-
tion of old classes, making it hard for the model to learn the
feature relation between old and new classes.
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