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Figure 1. Overview of our object parameters sampler. The en-
coder encodes the inputs to a normal distribution parameterized
by µs and σs. The decoder then samples a latent code from the
distribution and uses it with the conditioned information to esti-
mate the ending object position offsets.

Our supplementary material includes this document and
a video. Since our work synthesizes motions that involve
3D humans and objects in simulation, it is best to evalu-
ate the realism of the generated sequences through dynamic
presentation. Our video includes a brief introduction to the
project’s motivation, the problem formulation, the overview
of our method, and qualitative results.

1. Data Preparation
We train our pipeline on the GRAB dataset [6] similar

to previous works [5, 7]. GRAB contains full 3D human
shape and pose sequences of 10 digital humans interacting
with 51 objects of various shapes and sizes with four intents,
namely pass, lift, offhand, and use. Following [5], we take
out 4 validation objects (fryingpan, toothbrush, elephant,
hand) and 5 test objects (mug, camera, binoculars, apple,
toothpaste). To calculate the object BPS representation, we
center the object point cloud at its geometry center and use
1024 vertices sampled from [−0.15, 0.15]3 as a fixed basis
point set for all objects.

We manually label the keyframes of each task. The core
idea of labeling is to select the frames of stable right-hand
grasps that perceptually well represent the task. For each

sequence in the dataset, we select frames within a threshold
set empirically for each task and label them as the corre-
sponding task keyframes.

As the motion of approaching objects from T-poses and
the motion of conducting tasks from grasping usually take
about 2 seconds in the GRAB dataset, we downsample the
framerate of GRAB from 120 to 30 and clip 64-frame mo-
tion clips to train our motion inbetweening network. We use
four markers on each foot to compute foot-ground contact
labels Cfg ∈ {0, 1}8. The marker is considered in contact
with the ground when it is within 5cm of the ground and
its velocity is less than 75mm/s. To evaluate our motion
inbetweening network, we additionally train and test it on
the AMASS dataset [3] following [7] for fair comparisons.
AMASS is a large-scale human motion dataset that captures
more than 11000 motions.

2. Network Architectures

2.1. Object Parameters Sampler

Our object parameters sampler is a cVAE conditioned on
the task type, the human shape, and the object’s initial trans-
lation and orientation. Figure 1 shows the architecture of
the sampler. The encoder encodes the conditioned informa-
tion with the ground truth translation and orientation offsets
to a latent space of 16 dimensionalities. The decoder then
uses the conditioned information and a sampled code from
the latent space to reconstruct the translation and orienta-
tion offsets. Both the encoder and decoder are implemented
using fully-connected layers with skip connections.

2.2. Motion Inbetweening Network

Figure 2 shows the architecture of the motion inbetween-
ing network. Our model takes the poses of the first and last
frames and their translation distance as inputs and gener-
ates an infilled motion. We train the motion inbetweening
net with 64-frame data, but in inference, the model can syn-
thesize motions of arbitrary frames. For training, we lin-
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θ1: human pose in the first frame.
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Figure 2. Overview of our motion inbetweening network. The
model is bypernetwork-based. It takes the human poses in the first
and last frames, θ1 and θT , and their translation distance d1→T as
inputs and generates the weights of an INR block. The INR then
takes the temporal coordinates from [0, 1] to evaluate the transla-
tion offsets from the interpolated trajectory and the human poses
at corresponding timestamps.

early interpolate the trajectory using the translations of the
first and last frames and only predicts the offsets from it.
In inference, the interpolation scheme depends on the in-
put temporal coordinate vector τ , e.g., if upsamples to two
times the original frames, the interpolation scheme will out-
put the corresponding interpolated trajectory linearly two
times denser. We use the same marker placement as [7] to
select the surface body markers.

The weights prediction module of the motion inbetween-
ing net is implemented by 10 skip-connected linear layers
with hidden dimensions of 2048, accompanied by a con-
nector linear layer to output full parameters used by the
INR as a vector, which is then truncated in parts as weights
of each of the INR layers. The pose parameters θ1 and θT
passed to the weights prediction module are flattened to vec-
tors in R330 as the first and last columns of the motion im-
age. We apply factorized multiplicative modulation [4] and
the squeeze-and-excitation mechanism [2] to implement the
INR, which reduces the number of parameters of the INR
and the computation costs for the connector layer to predict
the weights.

3. Experiments
3.1. Qualitative Results

We show additional generated results in Figure 3, 4, 5,
and 6, and present more complete generated sequences in
our supplemental video. We also show the upsampling and
velocity adjustment results in the video. For upsampling,
we uniformly divide the temporal coordinate interval [0, 1]

into segments equal to the number of frames. For the non-
uniform velocity adjustment, we divide the temporal coor-
dinate interval into T sub-intervals, where T is the number
of frames, such that the lengths of the sub-intervals form a
geometric sequence, i.e., the lengths of the sub-intervals sat-
isfy: ln = l1 · rn−1 , where ln is the length of the n-th sub-
interval, n ∈ {1, ..., T}, r is the ratio of the geometric se-
quence. For the slow-to-fast sequence, we define r = 1.09.
For the fast-to-slow sequence, we define r = 1/1.09

3.2. Quantitative Evaluation Metrics

APD. We use the Average L2 Pairwise Distance (APD)
[8] to measure the diversity within generated samples. The
APD is computed by:

1

K(K − 1)

K∑
i=1

K∑
j ̸=i

||xi − xj ||2, (1)

where K is number of samples and xi, i ∈ {1, ...,K}, are
the sampled data.

ADE. We compute the Average L2 Distance (ADE) be-
tween the reconstructed marker sequences and the ground
truth. The formula to compute ADE is:

1

T

T∑
i=1

||xi − x̂i||2, (2)

where T is the number of frames, xi and x̂i are the ground
truth and reconstructed values respectively.

PSKL-J. Power Spectrum KL Divergence (PSKL) [1] is
used to measure the distribution distance between our gen-
erated results and the ground truth motion sequences. Here,
we follow [9] to evaluate PSKL w.r.t. the acceleration dis-
tribution for the SMPL-X joints (PSKL-J). For a frame of
F features, the power spectrum of each feature sequence sf
is computed as PS(sf ) = ||FFT(sf )||2. Thus, the average
power spectrum of the feature sf over N motion sequences
on one dataset C is given by:

PS(C|f) = 1

N

N∑
n=1

PS(sf ) (3)

and the PSKL between the ground truth and generated
datasets is computed by:

PSKL(C,D) =
1

F

F∑
f=1

E∑
e=1

||PS(C|f)||∗log
(
||PS(C|f)||
||PS(D|f)||

)
,

(4)
where C and D are datasets, f is a feature, and e is fre-
quency. As PSKL is asymmetric, we compute both direc-
tions to demonstrate the results.



3.3. Failure Cases and Limitations

Even though TOHO generates continuous and complete
human-object manipulation sequences, we observe some
failure cases when the goal net outputs inaccurate grasp-
ing poses. In Fig. 7, we show an example that the human
hand penetrating the object. Besides, although our object
motion estimation algorithm calculating object trajectory by
keeping the hand-object relationship of the grasping frame
works well on the GRAB dataset, the modeling of in-hand
object manipulation is limited in our setting. Another lim-
itation of TOHO is that it focuses on the modeling the hu-
man and the interacting object while ignoring the environ-
ment objects, which sometimes can lead to collisions with
the surrounding objects as shown in Fig. 8.

4. Social Impact

Generating realistic human-object manipulation motions
is of great value and interest from computer vision to
robotics. It has affluent applications in AR/VR, movies,
and video games. We recognize that although most appli-
cation scenarios of such frameworks are positive, harmful
exercises of these technologies may lead to destructive be-
haviors, especially with the advancement of deepfakes and
neural rendering. We will make the research available with
the appropriate license to prevent the framework from being
used by whole-body deepfakes.
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Figure 3. Additional generated results by our framework. We show generated motion sequences of humans of distinct shapes conducting
different tasks with unseen objects.
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Figure 4. From the top row to the bottom, we display the generated results of humans of various body types performing the same task
with the same object.
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Figure 5. From the top to the bottom row, we show generated results of the same human conducting the same task with different unseen
objects.



(a) 64 frames. (b) 128 frames.

(c) 256 frames. (d) 512 frames.

Figure 6. Examples of upsampling generated motion sequences to higher frames. Fig. (a) to (d) are the results of 64, 128, 256, and 512
frames, respectively. The results demonstrate our method can generate motions of framerates well beyond the training data. We offer the
results with a skip frame of 16 and include the last frames.
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Figure 7. A failure case. As our object motion estimation algorithm computes the object trajectory by keeping the hand-object relationship
of the grasping frame across the motion, hand-object penetration will be kept as well when an inaccurate grasping pose is given.
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Figure 8. A limitation of our framework. The focus of this work is to generate human-object manipulation motions and the environment is
not taken into account, which may sometimes lead to object-table collisions.
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